9,729 research outputs found
Quantum bit detector
We propose and analyze an experimental scheme of quantum nondemolition
detection of monophotonic and vacuum states in a superconductive toroidal
cavity by means of Rydberg atoms.Comment: 4 pages, 3 figure
Full characterization of a three-photon GHZ state using quantum state tomography
We have performed the first experimental tomographic reconstruction of a
three-photon polarization state. Quantum state tomography is a powerful tool
for fully describing the density matrix of a quantum system. We measured 64
three-photon polarization correlations and used a "maximum-likelihood"
reconstruction method to reconstruct the GHZ state. The entanglement class has
been characterized using an entanglement witness operator and the maximum
predicted values for the Mermin inequality was extracted.Comment: 3 pages, 3 figure
Optimal Tableaux Method for Constructive Satisfiability Testing and Model Synthesis in the Alternating-time Temporal Logic ATL+
We develop a sound, complete and practically implementable tableaux-based
decision method for constructive satisfiability testing and model synthesis in
the fragment ATL+ of the full Alternating time temporal logic ATL*. The method
extends in an essential way a previously developed tableaux-based decision
method for ATL and works in 2EXPTIME, which is the optimal worst case
complexity of the satisfiability problem for ATL+ . We also discuss how
suitable parametrizations and syntactic restrictions on the class of input ATL+
formulae can reduce the complexity of the satisfiability problem.Comment: 45 page
3D simulations of self-propelled, reconstructed jellyfish using vortex methods
We present simulations of the vortex dynamics associated with the
self-propelled motion of jellyfish. The geometry is obtained from image
segmentation of video recordings from live jellyfish. The numerical simulations
are performed using three-dimensional viscous, vortex particle methods with
Brinkman penalization to impose the kinematics of the jellyfish motion. We
study two types of strokes recorded in the experiment1. The first type (stroke
A) produces two vortex rings during the stroke: one outside the bell during the
power stroke and one inside the bell during the recovery stroke. The second
type (stroke B) produces three vortex rings: one ring during the power stroke
and two vortex rings during the recovery stroke. Both strokes propel the
jellyfish, with stroke B producing the highest velocity. The speed of the
jellyfish scales with the square root of the Reynolds number. The simulations
are visualized in a fluid dynamics video.Comment: 1 page, 1 figur
- …
