33 research outputs found
Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations
10.1371/journal.pone.0074040PLoS ONE89-POLN
JAK2 Exon 14 Deletion in Patients with Chronic Myeloproliferative Neoplasms
BACKGROUND: The JAK2 V617F mutation in exon 14 is the most common mutation in chronic myeloproliferative neoplasms (MPNs); deletion of the entire exon 14 is rarely detected. In our previous study of >10,000 samples from patients with suspected MPNs tested for JAK2 mutations by reverse transcription-PCR (RT-PCR) with direct sequencing, complete deletion of exon 14 (Deltaexon14) constituted <1% of JAK2 mutations. This appears to be an alternative splicing mutation, not detectable with DNA-based testing. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the possibility that MPN patients may express the JAK2 Deltaexon14 at low levels (<15% of total transcript) not routinely detectable by RT-PCR with direct sequencing. Using a sensitive RT-PCR-based fluorescent fragment analysis method to quantify JAK2 Deltaexon14 mRNA expression relative to wild-type, we tested 61 patients with confirmed MPNs, 183 with suspected MPNs (93 V617F-positive, 90 V617F-negative), and 46 healthy control subjects. The Deltaexon14 variant was detected in 9 of the 61 (15%) confirmed MPN patients, accounting for 3.96% to 33.85% (mean = 12.04%) of total JAK2 transcript. This variant was also detected in 51 of the 183 patients with suspected MPNs (27%), including 20 of the 93 (22%) with V617F (mean [range] expression = 5.41% [2.13%-26.22%]) and 31 of the 90 (34%) without V617F (mean [range] expression = 3.88% [2.08%-12.22%]). Immunoprecipitation studies demonstrated that patients expressing Deltaexon14 mRNA expressed a corresponding truncated JAK2 protein. The Deltaexon14 variant was not detected in the 46 control subjects. CONCLUSIONS/SIGNIFICANCE: These data suggest that expression of the JAK2 Deltaexon14 splice variant, leading to a truncated JAK2 protein, is common in patients with MPNs. This alternatively spliced transcript appears to be more frequent in MPN patients without V617F mutation, in whom it might contribute to leukemogenesis. This mutation is missed if DNA rather than RNA is used for testing
Significant association between polymorphism of the erythropoietin gene promoter and myelodysplastic syndrome
<p>Abstract</p> <p>Background</p> <p>Myelodysplastic syndrome (MDS) may be induced by certain mutagenic environmental or chemotherapeutic toxins; however, the role of susceptibility genes remains unclear. The G/G genotype of the single-nucleotide polymorphism (SNP) rs1617640 in the erythropoietin (<it>EPO</it>) promoter has been shown to be associated with decreased EPO expression. We examined the association of rs1617640 genotype with MDS.</p> <p>Methods</p> <p>We genotyped the EPO rS1617640 SNP in 189 patients with MDS, 257 with acute myeloid leukemia (AML), 106 with acute lymphoblastic leukemia, 97 with chronic lymphocytic leukemia, 353 with chronic myeloid leukemia, and 95 healthy controls.</p> <p>Results</p> <p>The G/G genotype was significantly more common in MDS patients (47/187; 25.1%) than in controls (6/95; 6.3%) or in patients with other leukemias (101/813; 12.4%) (all <it>P </it>< 0.001). Individuals with the G/G genotype were more likely than those with other genotypes to have MDS (odd ratio = 4.98; 95% CI = 2.04-12.13). Clinical and follow up data were available for 112 MDS patients and 186 AML patients. There was no correlation between EPO promoter genotype and response to therapy or overall survival in MDS or AML. In the MDS group, the GG genotype was significantly associated with shorter complete remission duration, as compared with the TT genotype (<it>P </it>= 0.03). Time to neutrophils recovery after therapy was significantly longer in MDS patients with the G/G genotype (<it>P </it>= 0.02).</p> <p>Conclusions</p> <p>These findings suggest a strong association between the rs1617640 G/G genotype and MDS. Further studies are warranted to investigate the utility of screening for this marker in individuals exposed to environmental toxins or chemotherapy.</p
Spatial and temporal variations of nitrous oxide flux between coastal marsh and the atmosphere in the Yellow River estuary of China
Origin and evolution of the bread wheat D genome
Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch’s goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement
Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat
Citation: Sehgal, S., Li, W., Rabinowicz, P., . . . & GIll, B. (2012). Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biology, 12, 1-13.
https://doi.org/10.1186/1471-2229-12-64Background: Bread wheat, one of the world’s staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat
genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat.
Results: The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The
sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were
syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple
sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. Conclusion: This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences
were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping
Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat
Citation: Akhunov, E., . . . & Gill, B. (2013). Comparative Analysis of Syntenic Genes in Grass Genomes Reveals Accelerated Rates of Gene Structure and Coding Sequence Evolution in Polyploid Wheat. Plant Physiology, 161(1), 252-265.
https://doi.org/10.1104/pp.112.205161Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%–25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a
duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits
Deep-learning based image reconstruction for MRI-guided near-infrared spectral tomography
Non-invasive near-infrared spectral tomography (NIRST) can incorporate
the structural information provided by simultaneous magnetic resonance
imaging (MRI), and this has significantly improved the images obtained
of tissue function. However, the process of MRI guidance in NIRST has
been time consuming because of the needs for tissue-type segmentation
and forward diffuse modeling of light propagation. To overcome these
problems, a reconstruction algorithm for MRI-guided NIRST based on
deep learning is proposed and validated by simulation and real patient
imaging data for breast cancer characterization. In this approach,
diffused optical signals and MRI images were both used as the input to
the neural network, and simultaneously recovered the concentrations of
oxy-hemoglobin, deoxy-hemoglobin, and water via end-to-end training by
using 20,000 sets of computer-generated simulation phantoms. The
simulation phantom studies showed that the quality of the
reconstructed images was improved, compared to that obtained by other
existing reconstruction methods. Reconstructed patient images show
that the well-trained neural network with only simulation data sets
can be directly used for differentiating malignant from benign breast
tumors.</jats:p
