700 research outputs found
A Darling Downs Quartet : four minor Queensland politicians: George Clark, James Morgan,William Allan and Francis Kates
A new layout optimization technique for interferometric arrays, applied to the MWA
Antenna layout is an important design consideration for radio interferometers
because it determines the quality of the snapshot point spread function (PSF,
or array beam). This is particularly true for experiments targeting the 21 cm
Epoch of Reionization signal as the quality of the foreground subtraction
depends directly on the spatial dynamic range and thus the smoothness of the
baseline distribution. Nearly all sites have constraints on where antennas can
be placed---even at the remote Australian location of the MWA (Murchison
Widefield Array) there are rock outcrops, flood zones, heritages areas,
emergency runways and trees. These exclusion areas can introduce spatial
structure into the baseline distribution that enhance the PSF sidelobes and
reduce the angular dynamic range. In this paper we present a new method of
constrained antenna placement that reduces the spatial structure in the
baseline distribution. This method not only outperforms random placement
algorithms that avoid exclusion zones, but surprisingly outperforms random
placement algorithms without constraints to provide what we believe are the
smoothest constrained baseline distributions developed to date. We use our new
algorithm to determine antenna placements for the originally planned MWA, and
present the antenna locations, baseline distribution, and snapshot PSF for this
array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA
WSClean : an implementation of a fast, generic wide-field imager for radio astronomy
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.Peer reviewedFinal Published versio
Interferometric imaging with the 32 element Murchison Wide-field Array
The Murchison Wide-field Array (MWA) is a low frequency radio telescope,
currently under construction, intended to search for the spectral signature of
the epoch of re-ionisation (EOR) and to probe the structure of the solar
corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles
grouped into 512 tiles, and be capable of imaging the sky south of 40 degree
declination, from 80 MHz to 300 MHz with an instantaneous field of view that is
tens of degrees wide and a resolution of a few arcminutes. A 32-station
prototype of the MWA has been recently commissioned and a set of observations
taken that exercise the whole acquisition and processing pipeline. We present
Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees
wide centered on Pictoris A. These images demonstrate the capacity and
stability of a real-time calibration and imaging technique employing the
weighted addition of warped snapshots to counter extreme wide field imaging
distortions.Comment: Accepted for publication in PASP. This is the draft before journal
typesetting corrections and proofs so does contain formatting and journal
style errors, also has with lower quality figures for space requirement
The EoR Sensitivity of the Murchison Widefield Array
Using the final 128 antenna locations of the Murchison Widefield Array (MWA),
we calculate its sensitivity to the Epoch of Reionization (EoR) power spectrum
of red- shifted 21 cm emission for a fiducial model and provide the tools to
calculate the sensitivity for any model. Our calculation takes into account
synthesis rotation, chro- matic and asymmetrical baseline effects, and excludes
modes that will be contaminated by foreground subtraction. For the fiducial
model, the MWA will be capable of a 14{\sigma} detection of the EoR signal with
one full season of observation on two fields (900 and 700 hours).Comment: 5 pages, 4 figures, 1 table, Accepted for publication in MNRAS
Letters. Supplementary material will be available in the published version,
or by contacting the author
The Murchison Widefield Array
It is shown that the excellent Murchison Radio-astronomy Observatory site
allows the Murchison Widefield Array to employ a simple RFI blanking scheme and
still calibrate visibilities and form images in the FM radio band. The
techniques described are running autonomously in our calibration and imaging
software, which is currently being used to process an FM-band survey of the
entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016].
6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI
Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland
On the complete classification of the unitary N=2 minimal superconformal field theories
Aiming at a complete classification of unitary N=2 minimal models (where the
assumption of space-time supersymmetry has been dropped), it is shown that each
modular invariant candidate of a partition function for such a theory is indeed
the partition function of a minimal model. A family of models constructed via
orbifoldings of either the diagonal model or of the space-time supersymmetric
exceptional models demonstrates that there exists a unitary N=2 minimal model
for every one of the allowed partition functions in the list obtained from
Gannon's work.
Kreuzer and Schellekens' conjecture that all simple current invariants can be
obtained as orbifolds of the diagonal model, even when the extra assumption of
higher-genus modular invariance is dropped, is confirmed in the case of the
unitary N=2 minimal models by simple counting arguments.Comment: 53 pages; Latex; minor changes in v2: intro expanded, references
added, typos corrected, footnote added on p31; renumbering of sections; main
theorem reformulated for clarity, but contents unchanged. Minor revisions in
v3: typos corrected, footnotes 5, 6 added, lemma 1 and section 3.3.2
rewritten for greater generality, section 3.3 review removed. To appear in
Comm. Math. Phy
High-energy sources at low radio frequency : the Murchison Widefield Array view of Fermi blazars
This is the accepted version of the following article: Giroletti, M. et al., A&A, 588 (2016) A141, which has been published in final form at DOI: http://dx.doi.org/10.1051/0004-6361/201527817. This article may be used for non-commercial purposes in accordance with the EDP Sciences self-archiving policies.Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. We characterize the spectral properties of the blazar population at low radio frequency compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6,100 deg^2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by \fermilat. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120--180 MHz) blazar spectral index is : blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.Peer reviewedFinal Published versio
- …
