511 research outputs found

    Heifer rearing within a sustainable dairy industry

    Get PDF

    A Study of Dairy Heifer Rearing Practices from Birth to Weaning and Their Associated Costs on UK Dairy Farms

    Get PDF
    There are many inputs into the dairy replacement herd which impact not only on the cost of rearing heifers from birth to first calving, but also on their future longevity and production potential. This study determined the current cost of rearing dairy heifers in the UK through the calculation and analysis of individual costs on a subset of 102 UK dairy farms. Each farm was visited and an extensive heifer rearing questionnaire was completed. Current heifer rearing practices were recorded to provide insight into critical management decisions. A cost analysis workbook was developed to calculate the costs of inputs in the pre-weaning period for labour, calving, feed, housing, health treatments and vaccinations, waste storage, machinery and equipment, and utilities. The average age at weaning was 62 d. The mean cost of rearing from birth to weaning was £195.19 per heifer with a mean daily cost of £3.14 (excluding the opportunity cost of the calf). This ranged from £1.68 to £6.11 among farms, reflecting major differences in management strategies and efficiency. The highest contribution to total costs came from feed (colostrum, milk, starter and forage) at 48.5% with milk feeding making up the greatest proportion of this at 37.3%. The next major expenses were bedding and labour, contributing 12.3% and 11.2% respectively. Unsurprisingly, delaying age at weaning increased total cost by £3.53 per day. Total costs were on average 45% higher on organic farms than conventional due to higher feed costs and later weaning. Calving pattern also had a strong association with the total cost being lowest with spring calving, intermediate with autumn calving and highest in multi block and all year round calving herds.fals

    Analysis of the Management and Costs Associated with Rearing Pregnant Dairy Heifers in the UK from Conception to Calving

    Get PDF
    Good management of the pregnant heifer is crucial to ensure that she is well grown and healthy and calves down easily before joining the milking herd. This study collected primary data on all aspects of heifer management on 101 UK farms during heifer pregnancy from conception to calving including farm factors and associated costs of system inputs. A cost analysis workbook was developed to calculate the cost of rearing per heifer for each of the study farms. Associations between cost of rearing and farms factors were determined using linear regression and analysis of variance. Heifers had a mean age of conception of 509 d (range 365 - 700 d) and an age at first calving of 784 d (range 639 - 973 d). The mean total cost of rearing during pregnancy was £450.36 (range £153.11 to £784.00) with a mean daily cost of £1.64 (range £0.56 to £2.86). The inputs contributing the most to cost were feed (32.7%), labour (23.8%) and slurry disposal (11.2%). Total purchased and homegrown feed and grazing contributed between 25.5% and 65.4% of total costs with a mean contribution of 43.6%. The cost of rearing was lowest in spring calving herds and highest in all year round calving herds with intermediate values in autumn and multi block calving herds. The main variables influencing the cost were the number of days spent at grass, age at first calving, calving pattern, breed, herd size and region. Each extra day in age at first calving increased the mean cost of rearing during pregnancy by £0.33/d whereas every extra day at grass reduced the cost by £1.75/d

    The management and associated costs of rearing heifers on UK dairy farms from weaning to conception

    Get PDF
    Dairy heifers only start to produce a return on investment at first calving. The length of the nonproductive rearing period is largely governed by farmer decisions on plane of nutrition and reproduction management. Primary data were collected from 101 dairy farms and a cost analysis workbook developed to calculate individual inputs in each of three periods to determine which management decisions and farm factors have the greatest influence on the total costs associated with rearing. This paper covers weaning until conception. Heifers were weaned at 62 d (range 42 - 112 d) and conceived by 509 d (range 365 - 700 d) giving an average weaning to conception period of 447 ± 60 d (range 253 to 630 d). The mean daily cost of rearing during this period was £1.65 (range £0.75 to £2.97 on different farms) giving a mean total cost of £745.94 per heifer (range £295.32 to £1745.85). This large variation was mostly due to the duration, which was mainly determined by age at first breeding (mean 476 days, range 365 - 700 d). The main contributors to total costs were feed (35.6%), labour (24.7%) and bedding (8.9%). The variables most strongly associated with the total costs were age at conception, calving pattern and breed. A multivariable model predicted an increase in mean cost of £2.26 for each extra day in age at conception. The total cost was highest in herds with all year round calving, intermediate in multi-block and lowest in spring and autumn calving herds, with Friesian x and Jersey herds having the lowest cost of rearing.falsePublished onlin

    Global Transcriptomic Profiling of Bovine Endometrial Immune Response In Vitro. I. Effect of Lipopolysaccharide on Innate Immunity

    Get PDF
    The dysregulation of endometrial immune response to bacterial lipopolysaccharide (LPS) has been implicated in uterine disease and infertility in the postpartum dairy cow, although the mechanisms are not clear. Here, we investigated whole-transcriptomic gene expression in primary cultures of mixed bovine epithelial and stromal endometrial cells. Cultures were exposed to LPS for 6 h, and cellular response was measured by bovine microarray. Approximately 30% of the 1006 genes altered by LPS were classified as being involved in immune response. Cytokines and chemokines (IL1A, CX3CL1, CXCL2, and CCL5), interferon (IFN)-stimulated genes (RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase molecule SAA3 were the most up-regulated genes. Ingenuity Pathway Analysis identified up-regulation of many inflammatory cytokines and chemokines, which function to attract immune cells to the endometrium, together with vascular adhesion molecules and matrix metalloproteinases, which can facilitate immune cell migration from the tissue toward the uterine lumen. Increased expression of many IFN-signaling genes, immunoproteasomes, guanylate-binding proteins, and genes involved in the intracellular recognition of pathogens suggests important roles for these molecules in the innate defense against bacterial infections. Our findings confirmed the important role of endometrial cells in uterine innate immunity, whereas the global approach used identified several novel immune response pathways triggered by LPS in the endometrium. Additionally, many genes involved in endometrial response to the conceptus in early pregnancy were also altered by LPS, suggesting one mechanism whereby an ongoing response to infection may interfere with the establishment of pregnancy

    Combining Genome Wide Association Studies and Differential Gene Expression Data Analyses Identifies Candidate Genes Affecting Mastitis Caused by Two Different Pathogens in the Dairy Cow

    Get PDF
    Mastitis is a costly disease which hampers the dairy industry. Inflammation of the mammary gland is commonly caused by bacterial infection, mainly Escherichia coli, Streptococcus uberis and Staphylococcus aureus. As more bacteria become multi-drug resistant, one potential approach to reduce the disease incidence rate is to breed selectively for the most appropriate and potentially protective innate immune response. The genetic contribution to effective disease resistance is, however, difficult to identify due to the complex interactions that occur. In the present study two published datasets were searched for common differentially expressed genes (DEGs) with similar changes in expression in mammary tissue following intra-mammary challenge with either E. coli or S. uberis. Additionally, the results of seven published genome-wide association studies (GWAS) on different dairy cow populations were used to compile a list of SNPs associated with somatic cell count. All genes located within 2 Mbp of significant SNPs were retrieved from the Ensembl database, based on the UMD3.1 assembly. A final list of 48 candidate genes with a role in the innate immune response identified from both the DEG and GWAS studies was further analyzed using Ingenuity Pathway Analysis. The main signalling pathways highlighted in the response of the bovine mammary gland to both bacterial infections were 1) granulocyte adhesion and diapedesis, 2) ephrin receptor signalling, 3) RhoA signalling and 4) LPS/IL1 mediated inhibition of RXR function. These pathways comprised a network regulating the activity of leukocytes, especially neutrophils, during mammary gland inflammation. The timely and properly controlled movement of leukocytes to infection loci seems particularly important in achieving a good balance between pathogen elimination and excessive tissue damage. These results suggest that polymorphisms in key genes in these pathways such as SELP, SELL, BCAR1, ACTR3, CXCL2, CXCL6, CXCL8 and FABP may influence the ability of dairy cows to resist mastitis

    Global Transcriptomic Profiling of Bovine Endometrial Immune Response In Vitro. II. Effect of Bovine Viral Diarrhea Virus on the Endometrial Response to Lipopolysaccharide

    Get PDF
    Infection with noncytopathic bovine viral diarrhea virus (ncpBVDV) is associated with uterine disease and infertility. This study investigated the influence of ncpBVDV on immune functions of the bovine endometrium by testing the response to bacterial lipopolysaccharide (LPS). Primary cultures of mixed epithelial and stromal cells were divided into four treatment groups (control [CONT], BVDV, CONT+LPS, and BVDV+LPS) and infected with ncpBVDV for 4 days followed by treatment with LPS for 6 h. Whole-transcriptomic gene expression was measured followed by Ingenuity Pathway Analysis. Differential expression of 184 genes was found between CONT and BVDV treatments, showing interplay between induction and inhibition of responses. Up-regulation of TLR3, complement, and chemotactic and TRIM factors by ncpBVDV all suggested an ongoing immune response to viral infection. Down-regulation of inflammatory cytokines, chemokines, CXCR4, and serine proteinase inhibitors suggested mechanisms by which ncpBVDV may simultaneously counter the host response. Comparison between BVDV+LPS and CONT+LPS treatments showed 218 differentially expressed genes. Canonical pathway analysis identified the key importance of interferon signaling. Top down-regulated genes were RSAD2, ISG15, BST2, MX2, OAS1, USP18, IFIT3, IFI27, SAMD9, IFIT1, and DDX58, whereas TRIM56, C3, and OLFML1 were most up-regulated. Many of these genes are also regulated by IFNT during maternal recognition of pregnancy. Many innate immune genes that typically respond to LPS were inhibited by ncpBVDV, including those involved in pathogen recognition, inflammation, interferon response, chemokines, tissue remodeling, cell migration, and cell death/survival. Infection with ncpBVDV can thus compromise immune function and pregnancy recognition, thereby potentially predisposing infected cows to postpartum bacterial endometritis and reduced fertility

    Acute BVDV infection inhibits expression of interferon-stimulated genes during pregnancy recognition in bovine endometrium

    Get PDF
    Bovine viral diarrhea virus (BVDV) can evade host detection by downregulation of interferon signaling pathways. Infection of cows with noncytopathic (ncp) BVDV can cause early embryonic mortality. Upregulation of type I interferon stimulated genes (ISGs) by blastocyst-secreted interferon tau (IFNT) is a crucial component of the maternal recognition of pregnancy (MRP) in ruminants. This study investigated the potential of acute BVDV infection to disrupt MRP by modulating endometrial ISG expression. Endometrial cells from 10 BVDV-free cows were cultured and treated with 0 or 100 ng/ml IFNT for 24 h in the absence or presence of ncpBVDV infection to yield four treatment groups: CONT, ncpBVDV, IFNT, or ncpBVDV+IFNT. ncpBVDV infection alone only upregulated TRIM56, but reduced mRNA expression of ISG15, MX2, BST2, and the proinflammatory cytokine IL1B. As anticipated, IFNT treatment alone significantly increased expression of all 17 ISGs tested. In contrast to the limited effect of ncpBVDV alone, the virus markedly inhibited IFNT-stimulated expression of 15 ISGs tested (ISG15, HERC5, USP18, DDX58, IFIH1, IFIT1, IFIT3, BST2, MX1, MX2, RSAD2, OAS1Y, SAMD9, GBP4, and PLAC8), together with ISG15 secreted protein. Only TRIM56 and IFI27 expression was unaltered. IL1B expression was reduced by the combined treatment. These results indicate that acute ncpBVDV infection may decrease uterine immunity and lead to MRP failure through inhibition of IFNT-stimulated endometrial ISG production. This in turn could reduce fertility and predispose cows to uterine disease, while evasion of the normal uterine immune response by ncpBVDV may contribute to maintenance and spreading of this economically important disease

    Effects of negative energy balance on liver gene and protein expression during the early postpartum period and its impacts on dairy cow fertility

    Get PDF
    End of project reportNegative energy balance (NEB) is a severe metabolic affecting high yielding dairy cows early post partum with both concurrent and latent negative effects on cow fertility as well as on milk production and cow health. The seasonal nature of Irish dairy production necessitates high cow fertility and a compact spring calving pattern in order to maximise grass utilisation. Poor dairy cow reproductive performance currently costs the Irish cattle industry in excess of €400 million annually. High milk yields have been associated with lower reproductive efficiency, and it has been suggested that this effect is probably mediated through its effects on the energy balance of the cow during lactation. The modern high genetic merit dairy cow prioritises nutrient supply towards milk production in early lactation and this demand takes precedence over the provision of optimal conditions for reproduction. In this study we used the bovine Affymetrix 23,000 gene microarray, which contains the most comprehensive set of bovine genes to be assembled and provides a means of investigating the modifying influences of energy balance on liver gene expression. Cows in severe negative energy balance (SNEB) in early lactation showed altered hepatic gene expression in metabolic processes as well as a down regulation of the insulin-like growth factor (IGF) system, where insulin like growth factor-1 (IGF-1), growth hormone receptor variant 1A (GHR1A) and insulin-like growth factor binding protein-acid labile subunit (IGFBP-ALS) were down regulated compared to the cows in the moderate negative energy balance MNEB group, consistent with a five-fold reduction in systemic concentrations of IGF1 in the SNEB group.Cows in SNEB showed elevated expression of key genes involved in the inflammatory response such as interleukin-8 (IL-8). There was a down regulation of genes involved in cellular growth in SNEB cows and moreover a negative regulator of cellular proliferation (HGFIN) was up regulated in SNEB cows, which is likely to compromise adaptation and recovery from NEB. The puma method of analysis revealed that 417 genes were differentially regulated by EB (P<0.05), of these genes 190 were up-regulated while 227 were down-regulated, with 405 genes having known biological functions. From Ingenuity Pathway Analysis (IPA), lipid catabolism was found to be the process most affected by differences in EB status
    corecore