415 research outputs found

    Training A Quantum Optimizer

    Full text link
    We study a variant of the quantum approximate optimization algorithm [ E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028] with slightly different parametrization and different objective: rather than looking for a state which approximately solves an optimization problem, our goal is to find a quantum algorithm that, given an instance of MAX-2-SAT, will produce a state with high overlap with the optimal state. Using a machine learning approach, we chose a "training set" of instances and optimized the parameters to produce large overlap for the training set. We then tested these optimized parameters on a larger instance set. As a training set, we used a subset of the hard instances studied by E. Crosson, E. Farhi, C. Yen-Yu Lin, H.-H. Lin, and P. Shor (CFLLS) [arXiv:1401.7320]. When tested on the full set, the parameters that we find produce significantly larger overlap than the optimized annealing times of CFLLS. Testing on other random instances from 2020 to 2828 bits continues to show improvement over annealing, with the improvement being most notable on the hardest instances. Further tests on instances of MAX-3-SAT also showed improvement on the hardest instances. This algorithm may be a possible application for near-term quantum computers with limited coherence times.Comment: 10 pages, 5 figure

    Magic State Distillation with Low Space Overhead and Optimal Asymptotic Input Count

    Full text link
    We present an infinite family of protocols to distill magic states for TT-gates that has a low space overhead and uses an asymptotic number of input magic states to achieve a given target error that is conjectured to be optimal. The space overhead, defined as the ratio between the physical qubits to the number of output magic states, is asymptotically constant, while both the number of input magic states used per output state and the TT-gate depth of the circuit scale linearly in the logarithm of the target error δ\delta (up to loglog1/δ\log \log 1/\delta). Unlike other distillation protocols, this protocol achieves this performance without concatenation and the input magic states are injected at various steps in the circuit rather than all at the start of the circuit. The protocol can be modified to distill magic states for other gates at the third level of the Clifford hierarchy, with the same asymptotic performance. The protocol relies on the construction of weakly self-dual CSS codes with many logical qubits and large distance, allowing us to implement control-SWAPs on multiple qubits. We call this code the "inner code". The control-SWAPs are then used to measure properties of the magic state and detect errors, using another code that we call the "outer code". Alternatively, we use weakly-self dual CSS codes which implement controlled Hadamards for the inner code, reducing circuit depth. We present several specific small examples of this protocol.Comment: 39 pages, (v2) renamed "odd" and "even" weakly self-dual CSS codes of (v1) to "normal" and "hyperbolic" codes, respectively. (v3) published in Quantu

    Antiferromagnetically coupled CoFeB/Ru/CoFeB trilayers

    Full text link
    This work reports on the magnetic interlayer coupling between two amorphous CoFeB layers, separated by a thin Ru spacer. We observe an antiferromagnetic coupling which oscillates as a function of the Ru thickness x, with the second antiferromagnetic maximum found for x=1.0 to 1.1 nm. We have studied the switching of a CoFeB/Ru/CoFeB trilayer for a Ru thickness of 1.1 nm and found that the coercivity depends on the net magnetic moment, i.e. the thickness difference of the two CoFeB layers. The antiferromagnetic coupling is almost independent on the annealing temperatures up to 300 degree C while an annealing at 350 degree C reduces the coupling and increases the coercivity, indicating the onset of crystallization. Used as a soft electrode in a magnetic tunnel junction, a high tunneling magnetoresistance of about 50%, a well defined plateau and a rectangular switching behavior is achieved.Comment: 3 pages, 3 figure

    Applications of satellite technology for regional organizations (Project ASTRO)

    Get PDF
    The direct arithmetic processing of adaptive delta modulation (ADM) encoded signals, conversion from ADM encoded signals to pulse code modulation (PCM) encoded signals, and conversion from PCM to ADM encoded signals are discussed. It is shown that signals which are ADM encoded can be arithmetically processed directly, without first decoding. Operating on the DM bit stream, and employing only standard digital hardware, the sum, difference and product can be obtained in PCM and ADM format

    S-COL: A Copernican turn for the development of flexibly reusable collaboration scripts

    Get PDF
    Collaboration scripts are usually implemented as parts of a particular collaborative-learning platform. Therefore, scripts of demonstrated effectiveness are hardly used with learning platforms at other sites, and replication studies are rare. The approach of a platform-independent description language for scripts that allows for easy implementation of the same script on different platforms has not succeeded yet in making the transfer of scripts feasible. We present an alternative solution that treats the problem as a special case of providing support on top of diverse Web pages: In this case, the challenge is to trigger support based on the recognition of a Web page as belonging to a specific type of functionally equivalent pages such as the search query form or the results page of a search engine. The solution suggested has been implemented by means of a tool called S-COL (Scripting for Collaborative Online Learning) and allows for the sustainable development of scripts and scaffolds that can be used with a broad variety of content and platforms. The tool’s functions are described. In order to demonstrate the feasibility and ease of script reuse with S-COL, we describe the flexible re-implementation of a collaboration script for argumentation in S-COL and its adaptation to different learning platforms. To demonstrate that a collaboration script implemented in S-COL can actually foster learning, an empirical study about the effects of a specific script for collaborative online search on learning activities is presented. The further potentials and the limitations of the S-COL approach are discussed

    Socio-cognitive scaffolding with collaboration scripts: a meta-analysis

    Get PDF
    Scripts for computer-supported collaborative learning (CSCL) offer socio-cognitive scaffolding for learners to engage in collaborative activities that are considered beneficial for learning. Yet, CSCL scripts are often criticized for hampering naturally emerging collaboration. Research on the effectiveness of CSCL scripts has shown divergent results. This article reports a meta-analysis about the effects of CSCL scripts on domain-specific knowledge and collaboration skills. Results indicate that CSCL scripts as a kind of socio-cognitive scaffolding can enhance learning outcomes substantially. Learning with CSCL scripts leads to a small positive effect on domain-specific knowledge (d = 0.20) and a large positive effect on collaboration skills (d = 0.95) compared to unstructured CSCL. Further analyses reveal that CSCL scripts are particularly effective for domain-specific learning when they prompt transactive activities (i.e., activities in which a learner’s reasoning builds on the contribution of a learning partner) and when they are combined with additional content-specific scaffolding (worked examples, concept maps, etc.). Future research on CSCL scripts should include measures of learners’ internal scripts (i.e., prior collaboration skills) and the transactivity of the actual learning process

    High ultraviolet C resistance of marine Planctomycetes

    Get PDF
    Planctomycetes are bacteria with particular characteristics such as internal membrane systems encompassing intracellular compartments, proteinaceous cell walls, cell division by yeast-like budding and large genomes. These bacteria inhabit a wide range of habitats, including marine ecosystems, in which ultra-violet radiation has a potential harmful impact in living organisms. To evaluate the effect of ultra-violet C on the genome of several marine strains of Planctomycetes, we developed an easy and fast DNA diffusion assay in which the cell wall was degraded with papain, the wall-free cells were embedded in an agarose microgel and lysed. The presence of double strand breaks and unwinding by single strand breaks allow DNA diffusion, which is visible as a halo upon DNA staining. The number of cells presenting DNA diffusion correlated with the dose of ultra-violet C or hydrogen peroxide. From DNA damage and viability experiments, we found evidence indicating that some strains of Planctomycetes are significantly resistant to ultra-violet C radiation, showing lower sensitivity than the known resistant Arthrobacter sp. The more resistant strains were those phylogenetically closer to Rhodopirellula baltica, suggesting that these species are adapted to habitats under the influence of ultra-violet radiation. Our results provide evidence indicating that the mechanism of resistance involves DNA damage repair and/or other DNA ultra-violet C-protective mechanism.This research was supported by the European Regional Development Fund (ERDF) through the COMPETE-Operational Competitiveness Programme and national funds through FCT-Foundation for Science and Technology, under the projects Pest-C/BIA/UI4050/2011 and PEst-C/MAR/LA0015/2013. We are grateful to Catia Moreira for helping with the extraction of the pigments.info:eu-repo/semantics/publishedVersio

    Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum.

    Get PDF
    Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting >100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved
    corecore