1,195 research outputs found
Massive Dirac particles on the background of charged de-Sitter black hole manifolds
We consider the behavior of massive Dirac fields on the background of a
charged de-Sitter black hole. All black hole geometries are taken into account,
including the Reissner-Nordstr\"{o}m-de-Sitter one, the Nariai case and the
ultracold case. Our focus is at first on the existence of bound quantum
mechanical states for the Dirac Hamiltonian on the given backgrounds. In this
respect, we show that in all cases no bound state is allowed, which amounts
also to the non-existence of normalizable time-periodic solutions of the Dirac
equation. This quantum result is in contrast to classical physics, and it is
shown to hold true even for extremal cases. Furthermore, we shift our attention
on the very interesting problem of the quantum discharge of the black holes.
Following Damour-Deruelle-Ruffini approach, we show that the existence of
level-crossing between positive and negative continuous energy states is a
signal of the quantum instability leading to the discharge of the black hole,
and in the cases of the Nariai geometry and of the ultracold geometries we also
calculate in WKB approximation the transmission coefficient related to the
discharge process.Comment: 19 pages, 11 figures. Macro package: Revtex4. Changes concern mainly
the introduction and the final discussion in section VI; moreover, Appendix D
on the evaluation of the Nariai transmission integral has been added.
References adde
Electronic States of Graphene Grain Boundaries
We introduce a model for amorphous grain boundaries in graphene, and find
that stable structures can exist along the boundary that are responsible for
local density of states enhancements both at zero and finite (~0.5 eV)
energies. Such zero energy peaks in particular were identified in STS
measurements [J. \v{C}ervenka, M. I. Katsnelson, and C. F. J. Flipse, Nature
Physics 5, 840 (2009)], but are not present in the simplest pentagon-heptagon
dislocation array model [O. V. Yazyev and S. G. Louie, Physical Review B 81,
195420 (2010)]. We consider the low energy continuum theory of arrays of
dislocations in graphene and show that it predicts localized zero energy
states. Since the continuum theory is based on an idealized lattice scale
physics it is a priori not literally applicable. However, we identify stable
dislocation cores, different from the pentagon-heptagon pairs, that do carry
zero energy states. These might be responsible for the enhanced magnetism seen
experimentally at graphite grain boundaries.Comment: 10 pages, 4 figures, submitted to Physical Review
Simulating Dynamical Features of Escape Panic
One of the most disastrous forms of collective human behaviour is the kind of
crowd stampede induced by panic, often leading to fatalities as people are
crushed or trampled. Sometimes this behaviour is triggered in life-threatening
situations such as fires in crowded buildings; at other times, stampedes can
arise from the rush for seats or seemingly without causes. Tragic examples
within recent months include the panics in Harare, Zimbabwe, and at the
Roskilde rock concert in Denmark. Although engineers are finding ways to
alleviate the scale of such disasters, their frequency seems to be increasing
with the number and size of mass events. Yet, systematic studies of panic
behaviour, and quantitative theories capable of predicting such crowd dynamics,
are rare. Here we show that simulations based on a model of pedestrian
behaviour can provide valuable insights into the mechanisms of and
preconditions for panic and jamming by incoordination. Our results suggest
practical ways of minimising the harmful consequences of such events and the
existence of an optimal escape strategy, corresponding to a suitable mixture of
individualistic and collective behaviour.Comment: For related information see http://angel.elte.hu/~panic,
http://www.helbing.org, http://angel.elte.hu/~fij, and
http://angel.elte.hu/~vicse
Asymptotic behaviour of the spectrum of a waveguide with distant perturbations
We consider the waveguide modelled by a -dimensional infinite tube. The
operator we study is the Dirichlet Laplacian perturbed by two distant
perturbations. The perturbations are described by arbitrary abstract operators
''localized'' in a certain sense, and the distance between their ''supports''
tends to infinity. We study the asymptotic behaviour of the discrete spectrum
of such system. The main results are a convergence theorem and the asymptotics
expansions for the eigenvalues. The asymptotic behaviour of the associated
eigenfunctions is described as well. We also provide some particular examples
of the distant perturbations. The examples are the potential, second order
differential operator, magnetic Schroedinger operator, curved and deformed
waveguide, delta interaction, and integral operator
Relational time in generally covariant quantum systems: four models
We analize the relational quantum evolution of generally covariant systems in
terms of Rovelli's evolving constants of motion and the generalized Heisenberg
picture. In order to have a well defined evolution, and a consistent quantum
theory, evolving constants must be self-adjoint operators. We show that this
condition imposes strong restrictions to the choices of the clock variables. We
analize four cases. The first one is non- relativistic quantum mechanics in
parametrized form. We show that, for the free particle case, the standard
choice of time is the only one leading to self-adjoint evolving constants.
Secondly, we study the relativistic case. We show that the resulting quantum
theory is the free particle representation of the Klein Gordon equation in
which the position is a perfectly well defined quantum observable. The
admissible choices of clock variables are the ones leading to space-like
simultaneity surfaces. In order to mimic the structure of General Relativity we
study the SL(2R) model with two Hamiltonian constraints. The evolving constants
depend in this case on three independent variables. We show that it is possible
to find clock variables and inner products leading to a consistent quantum
theory. Finally, we discuss the quantization of a constrained model having a
compact constraint surface. All the models considered may be consistently
quantized, although some of them do not admit any time choice such that the
equal time surfaces are transversal to the orbits.Comment: 18 pages, revtex fil
On Information Theory, Spectral Geometry and Quantum Gravity
We show that there exists a deep link between the two disciplines of
information theory and spectral geometry. This allows us to obtain new results
on a well known quantum gravity motivated natural ultraviolet cutoff which
describes an upper bound on the spatial density of information. Concretely, we
show that, together with an infrared cutoff, this natural ultraviolet cutoff
beautifully reduces the path integral of quantum field theory on curved space
to a finite number of ordinary integrations. We then show, in particular, that
the subsequent removal of the infrared cutoff is safe.Comment: 4 page
MenaINV dysregulates cortactin phosphorylation to promote invadopodium maturation
Invadopodia, actin-based protrusions of invasive carcinoma cells that focally activate extracellular matrix-degrading proteases, are essential for the migration and intravasation of tumor cells during dissemination from the primary tumor. We have previously shown that cortactin phosphorylation at tyrosine residues, in particular tyrosine 421, promotes actin polymerization at newly-forming invadopodia, promoting their maturation to matrix-degrading structures. However, the mechanism by which cells regulate the cortactin tyrosine phosphorylation-dephosphorylation cycle at invadopodia is unknown. Mena, an actin barbed-end capping protein antagonist, is expressed as various splice-isoforms. The MenaINV isoform is upregulated in migratory and invasive sub-populations of breast carcinoma cells, and is involved in tumor cell intravasation. Here we show that forced MenaINV expression increases invadopodium maturation to a far greater extent than equivalent expression of other Mena isoforms. MenaINV is recruited to invadopodium precursors just after their initial assembly at the plasma membrane, and promotes the phosphorylation of cortactin tyrosine 421 at invadopodia. In addition, we show that cortactin phosphorylation at tyrosine 421 is suppressed by the phosphatase PTP1B, and that PTP1B localization to the invadopodium is reduced by MenaINV expression. We conclude that MenaINV promotes invadopodium maturation by inhibiting normal dephosphorylation of cortactin at tyrosine 421 by the phosphatase PTP1B.United States. National Institutes of Health (CA150344)United States. National Institutes of Health (CA100324
Essential self-adjointness in one-loop quantum cosmology
The quantization of closed cosmologies makes it necessary to study squared
Dirac operators on closed intervals and the corresponding quantum amplitudes.
This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which
corrects section
The Fundamental Diagram of Pedestrian Movement Revisited
The empirical relation between density and velocity of pedestrian movement is
not completely analyzed, particularly with regard to the `microscopic' causes
which determine the relation at medium and high densities. The simplest system
for the investigation of this dependency is the normal movement of pedestrians
along a line (single-file movement). This article presents experimental results
for this system under laboratory conditions and discusses the following
observations: The data show a linear relation between the velocity and the
inverse of the density, which can be regarded as the required length of one
pedestrian to move. Furthermore we compare the results for the single-file
movement with literature data for the movement in a plane. This comparison
shows an unexpected conformance between the fundamental diagrams, indicating
that lateral interference has negligible influence on the velocity-density
relation at the density domain . In addition we test a
procedure for automatic recording of pedestrian flow characteristics. We
present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure
Optimal Self-Organization
We present computational and analytical results indicating that systems of
driven entities with repulsive interactions tend to reach an optimal state
associated with minimal interaction and minimal dissipation. Using concepts
from non-equilibrium thermodynamics and game theoretical ideas, we generalize
this finding to an even wider class of self-organizing systems which have the
ability to reach a state of maximal overall ``success''. This principle is
expected to be relevant for driven systems in physics like sheared granular
media, but it is also applicable to biological, social, and economic systems,
for which only a limited number of quantitative principles are available yet.Comment: This is the detailled revised version of a preprint on
``Self-Organised Optimality'' (cond-mat/9903319). For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://angel.elte.hu/~vicsek
- …
