906 research outputs found
Viscous flows in rotating pipes with internal cavities and related vortex breakdowns
The problem of predicting vortex breakdown, which is characterized by a drastic change in core size and trajectory, is still basically unsolved. In the present paper, viscous flow in a long rotating pipe is analyzed, as a model for the type of breakdown observed in wake vortices. The full Navier-Stokes equations are shown to simplify to a set of unlinked partial differential equations. These equations allow for two separate solutions, for both full pipe flows (the classic rotating Hagen-Poiseuille flow) and cavity flows, in which a central area, with no net mass flux or viscous dissipation, is produced. Conditions permitting switching from one type of flow to the other, with no change in the mass flux or velocities at the pipe surface, are found. It is then argued that these conditions indicate when vortex breakdown will occur
Gas flows through shallow T-junctions and parallel microchannel networks
We apply a recent extension of the Hele-Shaw scheme to analyze steady compressible viscous flows
through micro T-junctions. The linearity of the problem in terms of an appropriately defined
quadratic form of the pressure facilitates the definition of the viscous resistance of the configuration,
relating the gas mass-flow rate to entrance and exit conditions. Furthermore, under rather mild
restrictions, the performance of complex microchannel networks may be estimated through
superposition of the contributions of multiple basic junction elements. This procedure is applied to
an optimization model problem of a parallel microchannel network. The analysis and results are
readily adaptable to incompressible flows
Intermittent Gliding in the Hunting Flight of the Kestrel, Falco tinnunculus L.
The hunting flight of the kestrel (Falco tinnunculus) consists of short bouts of flight at wind speed against the wind with the eyes in a fixed position relative to the ground, and of short flights from one such position to the next.
High speed films taken with a camera in a fixed position of a hunting kestrel of known weight and dimensions, allow estimates to be made of the amount of energy required for this behaviour.
A theoretical model shows how a bird could economise by alternating flapping flight with short gliding bouts, without changing the position of the eyes above the ground, by mere displacement of the centre of gravity relative to the head. High speed film data confirm predictions from this model.
Comparing the states of many quantum systems
We investigate how to determine whether the states of a set of quantum
systems are identical or not. This paper treats both error-free comparison, and
comparison where errors in the result are allowed. Error-free comparison means
that we aim to obtain definite answers, which are known to be correct, as often
as possible. In general, we will have to accept also inconclusive results,
giving no information. To obtain a definite answer that the states of the
systems are not identical is always possible, whereas, in the situation
considered here, a definite answer that they are identical will not be
possible. The optimal universal error-free comparison strategy is a projection
onto the totally symmetric and the different non-symmetric subspaces, invariant
under permutations and unitary transformations. We also show how to construct
optimal comparison strategies when allowing for some errors in the result,
minimising either the error probability, or the average cost of making an
error. We point out that it is possible to realise universal error-free
comparison strategies using only linear elements and particle detectors, albeit
with less than ideal efficiency. Also minimum-error and minimum-cost strategies
may sometimes be realised in this way. This is of great significance for
practical applications of quantum comparison.Comment: 13 pages, 2 figures. Corrected a misprint on p. 7 and added a few
references. Accepted for publication in J Mod Op
Comment on "Exclusion of time in the theorem of Bell" by K. Hess and W. Philipp
A recent Letter by Hess and Philipp claims that Bell's theorem neglects the
possibility of time-like dependence in local hidden variables, hence is not
conclusive. Moreover the authors claim that they have constructed, in an
earlier paper, a local realistic model of the EPR correlations. However, they
themselves have neglected the experimenter's freedom to choose settings, while
on the other hand, Bell's theorem can be formulated to cope with time-like
dependence. This in itself proves that their toy model cannot satisfy local
realism, but we also indicate where their proof of its local realistic nature
fails.Comment: Latex needs epl.cl
Jet propulsion without inertia
A body immersed in a highly viscous fluid can locomote by drawing in and
expelling fluid through pores at its surface. We consider this mechanism of jet
propulsion without inertia in the case of spheroidal bodies, and derive both
the swimming velocity and the hydrodynamic efficiency. Elementary examples are
presented, and exact axisymmetric solutions for spherical, prolate spheroidal,
and oblate spheroidal body shapes are provided. In each case, entirely and
partially porous (i.e. jetting) surfaces are considered, and the optimal
jetting flow profiles at the surface for maximizing the hydrodynamic efficiency
are determined computationally. The maximal efficiency which may be achieved by
a sphere using such jet propulsion is 12.5%, a significant improvement upon
traditional flagella-based means of locomotion at zero Reynolds number. Unlike
other swimming mechanisms which rely on the presentation of a small cross
section in the direction of motion, the efficiency of a jetting body at low
Reynolds number increases as the body becomes more oblate, and limits to
approximately 162% in the case of a flat plate swimming along its axis of
symmetry. Our results are discussed in the light of slime extrusion mechanisms
occurring in many cyanobacteria
Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics
Swimming movements in boxfishes were much more
complex and varied than classical descriptions indicated.
At low to moderate rectilinear swimming speeds
(<5 TL s^(-1), where TL is total body length), they were
entirely median- and paired-fin swimmers, apparently
using their caudal fins for steering. The pectoral and
median paired fins generate both the thrust needed for
forward motion and the continuously varied, interacting
forces required for the maintenance of rectilinearity. It
was only at higher swimming speeds (above 5 TL s^(-1)), when
burst-and-coast swimming was used, that they became
primarily body and caudal-fin swimmers. Despite their
unwieldy appearance and often asynchronous fin beats,
boxfish swam in a stable manner. Swimming boxfish used
three gaits. Fin-beat asymmetry and a relatively nonlinear
swimming trajectory characterized the first gait
(0–1 TL s^(-1)). The beginning of the second gait (1–3 TL s^(-1))
was characterized by varying fin-beat frequencies and
amplitudes as well as synchrony in pectoral fin motions.
The remainder of the second gait (3–5 TL s^(-1)) was
characterized by constant fin-beat amplitudes, varying finbeat
frequencies and increasing pectoral fin-beat
asynchrony. The third gait (>5 TL s^(-1)) was characterized
by the use of a caudal burst-and-coast variant. Adduction
was always faster than abduction in the pectoral fins.
There were no measurable refractory periods between
successive phases of the fin movement cycles. Dorsal and
anal fin movements were synchronized at speeds greater
than 2.5 TL s^(-1), but were often out of phase with pectoral
fin movements
Bohmian Mechanics and Quantum Information
Many recent results suggest that quantum theory is about information, and
that quantum theory is best understood as arising from principles concerning
information and information processing. At the same time, by far the simplest
version of quantum mechanics, Bohmian mechanics, is concerned, not with
information but with the behavior of an objective microscopic reality given by
particles and their positions. What I would like to do here is to examine
whether, and to what extent, the importance of information, observation, and
the like in quantum theory can be understood from a Bohmian perspective. I
would like to explore the hypothesis that the idea that information plays a
special role in physics naturally emerges in a Bohmian universe.Comment: 25 pages, 2 figure
Relativity and EPR Entanglement: Comments
Recent experiment by Zhinden et al (Phys. Rev {\bf A} 63 02111, 2001)
purports to test compatibility between relativity and quantum mechanics in the
classic EPR setting. We argue that relativity has no role in the EPR argument
based solely on non-relativistic quantum formalism. It is suggested that this
interesting experiment may have significance to address fundamental questions
on quantum probability.Comment: 6 pages, no figure; Submitted to Phys. Rev.
Lambda's, V's and optimal cloning with stimulated emission
We show that optimal universal cloning of the polarization state of photons
can be achieved via stimulated emission in three-level systems, both of the
Lambda and the V type. We establish the equivalence of our systems with coupled
harmonic oscillators, which permits us to analyze the structure of the cloning
transformations realized. These transformations are shown to be equivalent to
the optimal cloning transformations for qubits discovered by Buzek and Hillery,
and Gisin and Massar. The down-conversion cloner discovered previously by some
of the authors is obtained as a limiting case. We demonstrate an interesting
equivalence between systems of Lambda atoms and systems of pairwise entangled V
atoms. Finally we discuss the physical differences between our photon cloners
and the qubit cloners considered previously and prove that the bounds on the
fidelity of the clones derived for qubits also apply in our situation.Comment: 10 page
- …
