3,563 research outputs found
Heat-transfer characteristics of a water-to- cryogenic-hydrogen heat exchanger
Heat transfer characteristics of water/cryogenic hydrogen heat exchanger for nuclear rocket reacto
Nonlinear polarisation and dissipative correspondence between low frequency fluid and gyrofluid equations
The correspondence between gyrofluid and low frequency fluid equations is
examined. The lowest order conservative effects in ExB advection, parallel
dynamics, and curvature match trivially. The principal concerns are
polarisation fluxes, and dissipative parallel viscosity and parallel heat
fluxes. The emergence of the polarisation heat flux in the fluid model and its
contribution to the energy theorem is reviewed. It is shown that gyroviscosity
and the polarisation fluxes are matched by the finite gyroradius corrections to
advection in the long wavelength limit, provided that the differences between
gyrocenter and particle representations is taken into account. The dissipative
parallel viscosity is matched by the residual thermal anisotropy in the
gyrofluid model in the collision dominated limit. The dissipative parallel heat
flux is matched by the gyrofluid parallel heat flux variables in the collision
dominated limit. Hence, the gyrofluid equations are a complete superset of the
low frequency fluid equations.Comment: RevTeX 4, 28 pages, no figures, final revised version for Physics of
Plasmas prior to proof stag
Recommended from our members
A model of ganglion axon pathways accounts for percepts elicited by retinal implants.
Degenerative retinal diseases such as retinitis pigmentosa and macular degeneration cause irreversible vision loss in more than 10 million people worldwide. Retinal prostheses, now implanted in over 250 patients worldwide, electrically stimulate surviving cells in order to evoke neuronal responses that are interpreted by the brain as visual percepts ('phosphenes'). However, instead of seeing focal spots of light, current implant users perceive highly distorted phosphenes that vary in shape both across subjects and electrodes. We characterized these distortions by asking users of the Argus retinal prosthesis system (Second Sight Medical Products Inc.) to draw electrically elicited percepts on a touchscreen. Using ophthalmic fundus imaging and computational modeling, we show that elicited percepts can be accurately predicted by the topographic organization of optic nerve fiber bundles in each subject's retina, successfully replicating visual percepts ranging from 'blobs' to oriented 'streaks' and 'wedges' depending on the retinal location of the stimulating electrode. This provides the first evidence that activation of passing axon fibers accounts for the rich repertoire of phosphene shape commonly reported in psychophysical experiments, which can severely distort the quality of the generated visual experience. Overall our findings argue for more detailed modeling of biological detail across neural engineering applications
When can Fokker-Planck Equation describe anomalous or chaotic transport?
The Fokker-Planck Equation, applied to transport processes in fusion plasmas,
can model several anomalous features, including uphill transport, scaling of
confinement time with system size, and convective propagation of externally
induced perturbations. It can be justified for generic particle transport
provided that there is enough randomness in the Hamiltonian describing the
dynamics. Then, except for 1 degree-of-freedom, the two transport coefficients
are largely independent. Depending on the statistics of interest, the same
dynamical system may be found diffusive or dominated by its L\'{e}vy flights.Comment: 4 pages. Accepted in Physical Review Letters. V2: only some minor
change
The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys
We perform forecasts for how baryon acoustic oscillation (BAO) scale and
redshift-space distortion (RSD) measurements from future spectroscopic emission
line galaxy (ELG) surveys such as Euclid are degraded in the presence of
spectral line misidentification. Using analytic calculations verified with mock
galaxy catalogs from log-normal simulations we find that constraints are
degraded in two ways, even when the interloper power spectrum is modeled
correctly in the likelihood. Firstly, there is a loss of signal-to-noise ratio
for the power spectrum of the target galaxies, which propagates to all
cosmological constraints and increases with contamination fraction, .
Secondly, degeneracies can open up between and cosmological parameters.
In our calculations this typically increases BAO scale uncertainties at the
10-20% level when marginalizing over parameters determining the broadband power
spectrum shape. External constraints on , or parameters determining the
shape of the power spectrum, for example from cosmic microwave background (CMB)
measurements, can remove this effect. There is a near-perfect degeneracy
between and the power spectrum amplitude for low values, where
is not well determined from the contaminated sample alone. This has the
potential to strongly degrade RSD constraints. The degeneracy can be broken
with an external constraint on , for example from cross-correlation with a
separate galaxy sample containing the misidentified line, or deeper
sub-surveys.Comment: 18 pages, 7 figures, updated to match version accepted by ApJ (extra
paragraph added at the end of Section 4.3, minor text edits
Anderson Localization in a String of Microwave Cavities
The field distributions and eigenfrequencies of a microwave resonator which
is composed of 20 identical cells have been measured. With external screws the
periodicity of the cavity can be perturbed arbitrarily. If the perturbation is
increased a transition from extended to localized field distributions is
observed. For very large perturbations the field distributions show signatures
of Anderson localization, while for smaller perturbations the field
distribution is extended or weakly localized. The localization length of a
strongly localized field distribution can be varied by adjusting the
penetration depth of the screws. Shifts in the frequency spectrum of the
resonator provide further evidence for Anderson localization.Comment: 7 pages RevTex, to be published in Phys. Rev.
- …
