14 research outputs found
Characterization of Static- and Fatigue-Loaded Carbon Composites by X-Ray CT
Computed Tomography methodologies were investigated to better understanding their possibility to improve the knowledge and a correct understanding of the behavior of thin Carbon-Polymer composites when static or fatigue loaded to failure. We applied CT to study a set of six aerospace grade carbon fiber/thermoplastic or fiber/thermoset matrix composites. The samples were subjected to either static or high-stress fatigue loading in tension. Both notched (central circular hole) and unnotched specimens were examined. We investigateed a high-temperature thermoplastic polyimide composite sample by acquiring CT data sets before, during (at set intervals), and after full-reversal (tension-compression), low-stress fatigue loading at the upper use temperature.</p
Recommended from our members
Quantitative film radiography
We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects
Recommended from our members
Radiation Detection Field Test at the Federal Express (FedEx) Air Cargo Facility at Denver International Airport (DIA)
Lawrence Livermore National Laboratory (LLNL) recently conducted a field-test of radiation detection and identification equipment at the air cargo facility of Federal Express (FedEx) located at Denver International Airport (DIA) over a period of two weeks. Comprehensive background measurements were performed and were analyzed, and a trial strategy for detection and identification of parcels displaying radioactivity was implemented to aid in future development of a comprehensive protection plan. The purpose of this project was threefold: {sm_bullet} Quantify background radiation environments at an air cargo facility. {sm_bullet} Quantify and identify ''nuisance'' alarms. {sm_bullet} Evaluate the performance of various isotope identifiers deployed in an operational environment (in this case, the operational environment included the biggest blizzard in over 90 years!)
Ion microtomography and particle‐induced x‐ray emission analysis of direct drive inertial confinement fusion targets
Recommended from our members
Detection of Special Nuclear Material in Cargo Containers Using Neutron Interrogation
The goal of the work reported here is to develop a concept for an active neutron interrogation system that can detect small targets of SNM contraband in cargo containers, roughly 5 kg HEU or 1 kg Pu, even when well shielded by a thick cargo. It is essential that the concept be reliable and have low false-positive and false-negative error rates. It also must be rapid to avoid interruption of commerce, completing the analysis in minutes. A new radiation signature unique to SNM has been identified that utilizes high-energy (E{sub {gamma}} = 3-7 MeV) fission product {gamma}-ray emission. Fortunately, this high-energy {gamma}-ray signature is robust in that it is very distinct compared to normal background radiation where there is no comparable high-energy {gamma}-ray radiation. Equally important, it has a factor of 10 higher yield than delayed neutrons that are the basis of classical interrogation technique normally used on small unshielded specimens of SNM. And it readily penetrates two meters of low-Z and high-Z cargo at the expected density of {approx} 0.5 gm/cm{sup 3}. Consequently, we expect that in most cases the signature flux at the container wall is at least 2-3 decades more intense than delayed neutron signals used historically and facilitates the detection of SNM even when shielded by thick cargo. Experiments have verified this signature and its predicted characteristics. However, they revealed an important interference due to the activation of {sup 16}O by the {sup 16}O(n,p){sup 16}N reaction that produces a 6 MeV {gamma}-ray following a 7-sec {beta}-decay of the {sup 16}N. This interference is important when irradiating with 14 MeV neutrons but is eliminated when lower energy neutron sources are utilized since the reaction threshold for {sup 16}O(n,p){sup 16}N is 10 MeV. The signature {gamma}-ray fluxes exiting a thick cargo can be detected in large arrays of scintillation detectors to produce useful signal count rates of 2-4 x 10{sup 4} cps. That is high enough to quickly identify SNM fission by its characteristic high energy {gamma}-ray emission and characteristic fast decay time. Fortunately, the fission product {gamma}-radiation decays with a distinctive T{sub 1/2} = 20-30 sec lifetime that is well matched to cargo scan speeds of about one minute per container. Experimental characterization of the {gamma}-ray fluxes exiting thick cargos has not yet been undertaken. The work reported here leads to definite requirements for the interrogation neutron source that can be met with neutron commercially available source technology. A small (6-20 ft) deuteron accelerator producing about {approx} 1 mA, 2-5 MeV deuteron beam on a deuterium or beryllium target is required. Neutrons produced by such an accelerator are kinematically collimated in the forward direction, reducing shielding requirements while increasing the neutron flux on target to meet the intensity requirement even when there is thick intervening cargo. In addition, this technology provides a very penetrating beam in the energy range 4-8 MeV while remaining below the oxygen activation threshold. Maximum counting statistics and lowest error rates in the identification occur when the beam is pulsed with a 50 % duty cycle. The period for this pulsing must be comparable to the half-lives of the species that make up the signature, i.e. 10-60 sec. This is readily achieved with commercially available equipment and is well suited to rapid scanning of cargo containers
Characterization of Low Density Carbon Foams by X-ray Computed Tomography (CT) and Ion Microtomography (IMT)
ABSTRACTTwo NDT techniques were used to characterize low-density, microcellular, carbon foams fabricated from a salt replica process. The two techniques are x-ray computed tomography (CT) and ion microtomography (IMT); data are presented on carbon foams that contain high-density regions. The data show that densities which differ by <10% are easily observable for these low density (<100 mg/cm3) materials. The data reveal that the carbon foams produced by this replica process have small density variations; the density being ∼30% greater at the outer edges than when compared to the interior of the foam. In addition, the density gradient is found to be rather sharp, that is the density drops-off rapidly from the outer edges to a uniform one in the interior of the foam. This edge build-up in carbon density was explained in terms of polymer concentrating on the foam exterior during drying which immediately followed a polymer infusion processing step. Supporting analytical data from other techniques show the foam material to be >99.9 % carbon</jats:p
Recommended from our members
Preprocessing of ion microtomography data for improved reconstruction quality
In Ion Microtomography (IMT), material densities are determined from the energy lost by ions as they pass through a specimen. For fine-scale measurements with micron-size beams, mechanical stability and precision of motion can impact the quality of the reconstruction. We describe several preprocessing procedures used to minimize imperfect specimen manipulation, including adjustment of the center of mass motion in sinograms and correction for vertical translations. In addition, the amount of noise in the reconstruction is reduced by utilizing median (as opposed to mean) ion energy loss values for density determinations. Furthermore, particular portions of the sampled image can be enhanced with minimal degradation of spatial resolution by a judicial choice of spatial filter in the reconstruction algorithm. The benefits and limitations of these preprocessing techniques are discussed
Recommended from our members
Characterization of low density carbon foams by x-ray computed tomography (CT) and ion microtomography (IMT)
Two NDT techniques were used to characterize low-density, microcellular, carbon foams fabricated from a salt replica process. The two techniques are x-ray computed tomography (CT) and ion microtomography (IMT); data are presented on carbon foams that contain high-density regions. The data show that densities which differ by 99.9% carbon. 4 refs., 7 figs., 1 tab
Recommended from our members
The "Nuclear Car Wash": A Scanner to Detect Illicit Special Nuclear Material in Cargo Containers
There is an urgent need to improve the reliability of screening cargo containers for illicit nuclear material that may be hidden there for terrorist purposes. A screening system is described for detection of fissionable material hidden in maritime cargo containers. The system makes use of a low intensity neutron beam for producing fission; and the detection of the abundant high-energy {gamma} rays emitted in the {beta}-decay of short-lived fission products and {beta}-delayed neutrons. The abundance of the delayed {gamma} rays is almost an order of magnitude larger than that of the delayed neutrons normally used to detect fission and they are emitted on about the same time scale as the delayed neutrons, i.e., {approx}1 min. The energy and temporal distributions of the delayed {gamma} rays provide a unique signature of fission. Because of their high energy, these delayed {gamma} rays penetrate low-Z cargoes much more readily than the delayed neutrons. Coupled with their higher abundance, the signal from the delayed {gamma} rays escaping from the container is predicted to be as much as six decades more intense than the delayed neutron signal, depending upon the type and thickness of the intervening cargo. The {gamma} rays are detected in a large array of scintillators located along the sides of the container as it is moved through them. Measurements have confirmed the signal strength in somewhat idealized experiments and have also identified one interference when 14.5 MeV neutrons from the D, T reaction are used for the interrogation. The interference can be removed easily by the appropriate choice of the neutron source
