426 research outputs found

    Hyperons and massive neutron stars: vector repulsion and SU(3) symmetry

    Full text link
    With the discovery of massive neutron stars such as PSR J1614-2230, the question has arisen whether exotic matter such as hyperons can exist in the neutron star core. We examine the conditions under which hyperons can exist in massive neutron stars. We consistently investigate the vector meson-hyperon coupling, going from SU(6) quark model to a broader SU(3) symmetry. We propose that the maximum neutron star mass decreases linearly with the strangeness content f_s of the neutron star core as M_max(f_s) = M_max(0) - 0.6 M_solar (f_s/0.1), which seems to be independent of the underlying nuclear equation of state and the vector baryon-meson coupling scheme. Thus, pulsar mass measurements can be used to constrain the hyperon fraction in neutron stars.Comment: 13 pages, 10 figure

    Hyperons and massive neutron stars: the role of hyperon potentials

    Full text link
    The constituents of cold dense matter are still far from being understood. However, neutron star observations such as the recently observed pulsar PSR J1614-2230 with a mass of 1.97+/-0.04 M_solar help to considerably constrain the hadronic equation of state (EoS). We systematically investigate the influence of the hyperon potentials on the stiffness of the EoS. We find that they have but little influence on the maximum mass compared to the inclusion of an additional vector meson mediating repulsive interaction amongst hyperons. The new mass limit can only be reached with this additional meson regardless of the hyperon potentials. Further, we investigate the impact of the nuclear compression modulus and the effective mass of the nucleon at saturation density on the high density regime of the EoS. We show that the maximum mass of purely nucleonic stars is very sensitive to the effective nucleon mass but only very little to the compression modulus.Comment: 24 pages, 8 figure

    Solving relativistic hydrodynamic equation in presence of magnetic field for phase transition in a neutron star

    Full text link
    Hadronic to quark matter phase transition may occur inside neutron stars (NS) having central densities of the order of 3-10 times normal nuclear matter saturation density (n0n_0). The transition is expected to be a two-step process; transition from hadronic to 2-flavour matter and two-flavour to β\beta equilibrated charge neutral three-flavour matter. In this paper we concentrate on the first step process and solve the relativistic hydrodynamic equations for the conversion front in presence of high magnetic field. Lorentz force due to magnetic field is included in the energy momentum tensor by averaging over the polar angles. We find that for an initial dipole configuration of the magnetic field with a sufficiently high value at the surface, velocity of the front increases considerably.Comment: 16 pages, 4 figures, same as published version of JPG, J. Phys. G: Nucl. Part. Phys. 39 (2012) 09520

    Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency

    Get PDF
    To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats

    Core collapse supernovae in the QCD phase diagram

    Full text link
    We compare two classes of hybrid equations of state with a hadron-to-quark matter phase transition in their application to core collapse supernova simulations. The first one uses the quark bag model and describes the transition to three-flavor quark matter at low critical densities. The second one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with parameters describing a phase transition to two-flavor quark matter at higher critical densities. These models possess a distinctly different temperature dependence of their transition densities which turns out to be crucial for the possible appearance of quark matter in supernova cores. During the early post bounce accretion phase quark matter is found only if the phase transition takes place at sufficiently low densities as in the study based on the bag model. The increase critical density with increasing temperature, as obtained for our PNJL parametrization, prevents the formation of quark matter. The further evolution of the core collapse supernova as obtained applying the quark bag model leads to a structural reconfiguration of the central proto-neutron star where, in addition to a massive pure quark matter core, a strong hydrodynamic shock wave forms and a second neutrino burst is released during the shock propagation across the neutrinospheres. We discuss the severe constraints in the freedom of choice of quark matter models and their parametrization due to the recently observed 2 solar mass pulsar and their implications for further studies of core collapse supernovae in the QCD phase diagram.Comment: 19 pages, 4 figures, CPOD2010 conference proceedin

    Solvation free energy profile of the SCN- ion across the water-1,2-dichloroethane liquid/liquid interface. A computer simulation study

    Get PDF
    The solvation free energy profile of a single SCN- ion is calculated across the water-1,2-dichloroethane liquid/liquid interface at 298 K by the constraint force method. The obtained results show that the free energy cost of transferring the ion from the aqueous to the organic phase is about 70 kJ/mol, The free energy profile shows a small but clear well at the aqueous side of the interface, in the subsurface region of the water phase, indicating the ability of the SCN- ion to be adsorbed in the close vicinity of the interface. Upon entrance of the SCN- ion to the organic phase a coextraction of the water molecules of its first hydration shell occurs. Accordingly, when it is located at the boundary of the two phases the SCN- ion prefers orientations in which its bulky S atom is located at the aqueous side, and the small N atom, together with its first hydration shell, at the organic side of the interface

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Addressing the ‘hypoxia paradox’ in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues

    Get PDF
    Background: Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called ‘long COVID’ and ‘neuroCOVID’, becomes increasingly evident. Main body of the abstract: Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term ‘hypoxia paradox’. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this ‘hypoxia paradox’ caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. Short conclusion: Substitution of EPO may—among other beneficial EPO effects in severe COVID-19—circumvent downstream consequences of the ‘hypoxia paradox’. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warrante
    corecore