2,229 research outputs found
Using mean field theory to determine the structure of uniform fluids
The structure of a uniform simple liquid is related to that of a reference
fluid with purely repulsive intermolecular forces in a self-consistently
determined external reference field (ERF) phi_ R. The ERF can be separated into
a harshly repulsive part phi_ R0 generated by the repulsive core of a reference
particle fixed at the origin and a more slowly varying part phi_ R1 arising
from a mean field treatment of the attractive forces. We use a generalized
linear response method to calculate the reference fluid structure, first
determining the response to the smoother part phi_ R1 of the ERF alone,
followed by the response to the harshly repulsive part. Both steps can be
carried out very accurately, as confirmed by MD simulations, and good agreement
with the structure of the full LJ fluid is found.Comment: 11 pages, 7 figure
Model of a fluid at small and large length scales and the hydrophobic effect
We present a statistical field theory to describe large length scale effects
induced by solutes in a cold and otherwise placid liquid. The theory divides
space into a cubic grid of cells. The side length of each cell is of the order
of the bulk correlation length of the bulk liquid. Large length scale states of
the cells are specified with an Ising variable. Finer length scale effects are
described with a Gaussian field, with mean and variance affected by both the
large length scale field and by the constraints imposed by solutes. In the
absence of solutes and corresponding constraints, integration over the Gaussian
field yields an effective lattice gas Hamiltonian for the large length scale
field. In the presence of solutes, the integration adds additional terms to
this Hamiltonian. We identify these terms analytically. They can provoke large
length scale effects, such as the formation of interfaces and depletion layers.
We apply our theory to compute the reversible work to form a bubble in liquid
water, as a function of the bubble radius. Comparison with molecular simulation
results for the same function indicates that the theory is reasonably accurate.
Importantly, simulating the large length scale field involves binary arithmetic
only. It thus provides a computationally convenient scheme to incorporate
explicit solvent dynamics and structure in simulation studies of large
molecular assemblies
Design and test of a 100 ampere-hour nickel cadmium battery module
A feasibility study was conducted on the design and construction of a flight-worthy replaceable battery module consisting of four 100 A.H. nickel-cadmium rechargeable cells for large manned space vehicles. The module is planned to weigh less than 43 pounds and be fully maintainable in a zero-g environment by one man without use of special tools. An active environmental control system was designed for the temperature control of the module
Quasi-Moessbauer effect in two dimensions
Expressions for the absorption spectrum of a nucleus in a three- and a
two-dimensional crystal respectively are obtained analytically at zero and at
finite temperature respectively. It is found that for finite temperature in two
dimensions the Moessbauer effect vanishes but is replaced by what we call a
Quasi-Moessbauer effect. Possibilities to identify two-dimensional elastic
behavior are discussed.Comment: 18 pages, 5 figures, notation simplifie
Self Consistent Molecular Field Theory for Packing in Classical Liquids
Building on a quasi-chemical formulation of solution theory, this paper
proposes a self consistent molecular field theory for packing problems in
classical liquids, and tests the theoretical predictions for the excess
chemical potential of the hard sphere fluid. Results are given for the self
consistent molecular fields obtained, and for the probabilities of occupancy of
a molecular observation volume. For this system, the excess chemical potential
predicted is as accurate as the most accurate prior theories, particularly the
scaled particle (Percus-Yevick compressibility) theory. It is argued that the
present approach is particularly simple, and should provide a basis for a
molecular-scale description of more complex solutions.Comment: 6 pages and 5 figure
Ultrasound morphology of carotid plaque and its link with lipid: protein content and 3d microstructure of the plaque.
the 22nd Meeting of the European Society of Neurosonology and Cerebral Hemodynamics (ESNCH), 19-21 May 2017. Berlin, Germany, and published in the International Journal of Stroke 12(1S): 57 (Poster 101), May 2017. ISSN: 1747-4930, eISSN: 1747-4949
Metallic behaviour of carrier-polarized C molecular layers: Experiment and Theory
Although C is a molecular crystal with a bandgap E of ~2.5 eV, we
show that E is strongly affected by injected charge. In sharp contrast to
the Coulomb blockade typical of quantum dots, E is {\it reduced} by the
Coulomb effects. The conductance of a thin C layer sandwiched between
metal (Al, Ag, Au, Mg and Pt) contacts is investigated. Excellent Ohmic
conductance is observed for Al electrodes protected with ultra-thin LiF layers.
First-principles calculations, Hubbard models etc., show that the energy gap of
C is dramatically reduced when electrons hop from C to
C.Comment: 4 PRL style pages, 2 figures. email: [email protected]
X-Ray Scattering Measurements of the Transient Structure of a Driven Charge-Density-Wave
We report time-resolved x-ray scattering measurements of the transient
structural response of the sliding {\bf Q} charge-density-wave (CDW) in
NbSe to a reversal of the driving electric field. The observed time scale
characterizing this response at 70K varies from 15 msec for driving
fields near threshold to 2 msec for fields well above threshold. The
position and time-dependent strain of the CDW is analyzed in terms of a
phenomenological equation of motion for the phase of the CDW order parameter.
The value of the damping constant, eV
seconds \AA, is in excellent agreement with the value
determined from transport measurements. As the driving field approaches
threshold from above, the line shape becomes bimodal, suggesting that the CDW
does not depin throughout the entire sample at one well-defined voltage.Comment: revtex 3.0, 7 figure
Scaling in Complex Systems: Analytical Theory of Charged Pores
In this paper we find an analytical solution of the equilibrium ion
distribution for a toroidal model of a ionic channel, using the Perfect
Screening Theorem (PST). The ions are charged hard spheres, and are treated
using a variational Mean Spherical Approximation (VMSA) .
Understanding ion channels is still a very open problem, because of the many
exquisite tuning details of real life channels. It is clear that the electric
field plays a major role in the channel behaviour, and for that reason there
has been a lot of work on simple models that are able to provide workable
theories. Recently a number of interesting papers have appeared that discuss
models in which the effect of the geometry, excluded volume and non-linear
behaviour is considered.
We present here a 3D model of ionic channels which consists of a charged,
deformable torus with a circular or elliptical cross section, which can be flat
or vertical (close to a cylinder). Extensive comparisons to MC simulations were
performed.
The new solution opens new possibilities, such as studying flexible pores,
and water phase transformations inside the pores using an approach similar to
that used on flat crystal surfaces
- …
