293 research outputs found
Concepts and Their Dynamics: A Quantum-Theoretic Modeling of Human Thought
We analyze different aspects of our quantum modeling approach of human
concepts, and more specifically focus on the quantum effects of contextuality,
interference, entanglement and emergence, illustrating how each of them makes
its appearance in specific situations of the dynamics of human concepts and
their combinations. We point out the relation of our approach, which is based
on an ontology of a concept as an entity in a state changing under influence of
a context, with the main traditional concept theories, i.e. prototype theory,
exemplar theory and theory theory. We ponder about the question why quantum
theory performs so well in its modeling of human concepts, and shed light on
this question by analyzing the role of complex amplitudes, showing how they
allow to describe interference in the statistics of measurement outcomes, while
in the traditional theories statistics of outcomes originates in classical
probability weights, without the possibility of interference. The relevance of
complex numbers, the appearance of entanglement, and the role of Fock space in
explaining contextual emergence, all as unique features of the quantum
modeling, are explicitly revealed in this paper by analyzing human concepts and
their dynamics.Comment: 31 pages, 5 figure
Potentials for hyper-Kahler metrics with torsion
We prove that locally any hyper-K\"ahler metric with torsion admits an HKT
potential.Comment: 9 page
Meaning-focused and Quantum-inspired Information Retrieval
In recent years, quantum-based methods have promisingly integrated the
traditional procedures in information retrieval (IR) and natural language
processing (NLP). Inspired by our research on the identification and
application of quantum structures in cognition, more specifically our work on
the representation of concepts and their combinations, we put forward a
'quantum meaning based' framework for structured query retrieval in text
corpora and standardized testing corpora. This scheme for IR rests on
considering as basic notions, (i) 'entities of meaning', e.g., concepts and
their combinations and (ii) traces of such entities of meaning, which is how
documents are considered in this approach. The meaning content of these
'entities of meaning' is reconstructed by solving an 'inverse problem' in the
quantum formalism, consisting of reconstructing the full states of the entities
of meaning from their collapsed states identified as traces in relevant
documents. The advantages with respect to traditional approaches, such as
Latent Semantic Analysis (LSA), are discussed by means of concrete examples.Comment: 11 page
Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory
We put forward a possible new interpretation and explanatory framework for
quantum theory. The basic hypothesis underlying this new framework is that
quantum particles are conceptual entities. More concretely, we propose that
quantum particles interact with ordinary matter, nuclei, atoms, molecules,
macroscopic material entities, measuring apparatuses, ..., in a similar way to
how human concepts interact with memory structures, human minds or artificial
memories. We analyze the most characteristic aspects of quantum theory, i.e.
entanglement and non-locality, interference and superposition, identity and
individuality in the light of this new interpretation, and we put forward a
specific explanation and understanding of these aspects. The basic hypothesis
of our framework gives rise in a natural way to a Heisenberg uncertainty
principle which introduces an understanding of the general situation of 'the
one and the many' in quantum physics. A specific view on macro and micro
different from the common one follows from the basic hypothesis and leads to an
analysis of Schrodinger's Cat paradox and the measurement problem different
from the existing ones. We reflect about the influence of this new quantum
interpretation and explanatory framework on the global nature and evolutionary
aspects of the world and human worldviews, and point out potential explanations
for specific situations, such as the generation problem in particle physics,
the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure
What is Quantum? Unifying Its Micro-Physical and Structural Appearance
We can recognize two modes in which 'quantum appears' in macro domains: (i) a
'micro-physical appearance', where quantum laws are assumed to be universal and
they are transferred from the micro to the macro level if suitable 'quantum
coherence' conditions (e.g., very low temperatures) are realized, (ii) a
'structural appearance', where no hypothesis is made on the validity of quantum
laws at a micro level, while genuine quantum aspects are detected at a
structural-modeling level. In this paper, we inquire into the connections
between the two appearances. We put forward the explanatory hypothesis that,
'the appearance of quantum in both cases' is due to 'the existence of a
specific form of organisation, which has the capacity to cope with random
perturbations that would destroy this organisation when not coped with'. We
analyse how 'organisation of matter', 'organisation of life', and 'organisation
of culture', play this role each in their specific domain of application, point
out the importance of evolution in this respect, and put forward how our
analysis sheds new light on 'what quantum is'.Comment: 10 page
Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory
Inspired by a quantum mechanical formalism to model concepts and their
disjunctions and conjunctions, we put forward in this paper a specific
hypothesis. Namely that within human thought two superposed layers can be
distinguished: (i) a layer given form by an underlying classical deterministic
process, incorporating essentially logical thought and its indeterministic
version modeled by classical probability theory; (ii) a layer given form under
influence of the totality of the surrounding conceptual landscape, where the
different concepts figure as individual entities rather than (logical)
combinations of others, with measurable quantities such as 'typicality',
'membership', 'representativeness', 'similarity', 'applicability', 'preference'
or 'utility' carrying the influences. We call the process in this second layer
'quantum conceptual thought', which is indeterministic in essence, and contains
holistic aspects, but is equally well, although very differently, organized
than logical thought. A substantial part of the 'quantum conceptual thought
process' can be modeled by quantum mechanical probabilistic and mathematical
structures. We consider examples of three specific domains of research where
the effects of the presence of quantum conceptual thought and its deviations
from classical logical thought have been noticed and studied, i.e. economics,
decision theory, and concept theories and which provide experimental evidence
for our hypothesis.Comment: 14 page
Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms
Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanism(s) mediating [14C]L-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that L-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]L-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with L-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms
Global Ethics and Nanotechnology: A Comparison of the Nanoethics Environments of the EU and China
The following article offers a brief overview of current nanotechnology policy, regulation and ethics in Europe and The People’s Republic of China with the intent of noting (dis)similarities in approach, before focusing on the involvement of the public in science and technology policy (i.e. participatory Technology Assessment). The conclusions of this article are, that (a) in terms of nanosafety as expressed through policy and regulation, China PR and the EU have similar approaches towards, and concerns about, nanotoxicity—the official debate on benefits and risks is not markedly different in the two regions; (b) that there is a similar economic drive behind both regions’ approach to nanodevelopment, the difference being the degree of public concern admitted; and (c) participation in decision-making is fundamentally different in the two regions. Thus in China PR, the focus is on the responsibility of the scientist; in the EU, it is about government accountability to the public. The formulation of a Code of Conduct for scientists in both regions (China PR’s predicted for 2012) reveals both similarity and difference in approach to nanotechnology development. This may change, since individual responsibility alone cannot guide S&T development, and as public participation is increasingly seen globally as integral to governmental decision-making
- …
