6,507 research outputs found
Simultaneous dual-element analyses of refractory metals in naturally occurring matrices using resonance ionization of sputtered atoms
The combination of secondary neutral mass spectrometry (SNMS) and resonance ionization spectroscopy (RIS) has been shown to be a powerful tool for the detection of low levels of elemental impurities in solids. Drawbacks of the technique have been the laser-repetition-rate-limited, low duty cycle of the analysis and the fact that RIS schemes are limited to determinations of a single element. These problems have been addressed as part of an ongoing program to explore the usefulness of RIS/SNMS instruments for the analysis of naturally occurring samples. Efficient two-color, two-photon (1+1) resonance ionization schemes were identified for Mo and for four platinum-group elements (Ru, Os, Ir, and Re). Careful selection of the ionization schemes allowed Mo or Ru to be measured simultaneously with Re, Os, or Ir, using two tunable dye lasers and an XeCl excimer laser. Resonance frequencies could be switched easily under computer control, so that all five elements can be rapidly analyzed. In situ measurements of these elements in metal grains from five meteorites were conducted. From the analyses, estimates of the precision and the detection limit of the instrument were made. The trade-off between lower detection limits and rapid multielement RIS analyses is discussed
Cell cycle-dependent phosphorylation of Theileria annulata schizont surface proteins
The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state
The solar oxygen-isotopic composition: Predictions and implications for solar nebula processes
The outer layers of the Sun are thought to preserve the average isotopic and chemical composition of the solar system. The solar O-isotopic composition is essentially unmeasured, though models based on variations in meteoritic materials yield several predictions. These predictions are reviewed and possible variations on these predictions are explored. In particular, the two-component mixing model of Clayton and Mayeda (1984) (slightly revised here) predicts solar compositions to lie along an extension of the calcium-aluminum-rich inclusion (CAI) ^(16)O line between (δ^(18)O, δ^(17)O) = (16.4, 11.4)%0 and (12.3, 7.5)%0. Consideration of data from ordinary chondrites suggests that the range of predicted solar composition should extend to slightly lower δ^(18)O values. The predicted solar composition is critically sensitive to the solid/gas ratio in the meteorite-forming region, which is often considered to be significantly enriched over solar composition. A factor of two solid/gas enrichment raises the predicted solar (δ^(18)O, δ^(17)O) values along an extension of the CAI ^(16)O line to (33, 28)%0. The model is also sensitive to the nebular O gas phase. If conversion of most of the gaseous O from CO to H_2O occurred at relatively low temperatures and was incomplete at the time of CM aqueous alteration, the predicted nebular gas composition (and hence the solar composition) would be isotopically heavier along a slope 1/2 line. The likelihood of having a single solid nebular O component is discussed. A distribution of initial solid compositions along the CAI ^(16)O line (rather than simply as an end-member) would not significantly change the predictions above in at least one scenario. Even considering these variations within the mixing model, the predicted range of solar compositions is distinct from that expected if the meteoritic variations are due to non-mass-dependent fractionation. Thus, a measurement of the solar O composition to a precision of several permil would clearly distinguish between these theories and should clarify a number of other important issues regarding solar system formation
Variations in solar wind fractionation as seen by ACE/SWICS over a solar cycle and the implications for Genesis Mission results
We use ACE/SWICS elemental composition data to compare the variations in
solar wind fractionation as measured by SWICS during the last solar maximum
(1999-2001), the solar minimum (2006-2009) and the period in which the Genesis
spacecraft was collecting solar wind (late 2001 - early 2004). We differentiate
our analysis in terms of solar wind regimes (i.e. originating from interstream
or coronal hole flows, or coronal mass ejecta). Abundances are normalized to
the low-FIP ion magnesium to uncover correlations that are not apparent when
normalizing to high-FIP ions. We find that relative to magnesium, the other
low-FIP elements are measurably fractionated, but the degree of fractionation
does not vary significantly over the solar cycle. For the high-FIP ions,
variation in fractionation over the solar cycle is significant: greatest for
Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance
ratios are examined as a function of solar wind speed, we find a strong
correlation, with the remarkable observation that the degree of fractionation
follows a mass-dependent trend. We discuss the implications for correcting the
Genesis sample return results to photospheric abundances.Comment: Accepted for publication in Ap
Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Anthony, R. E., Chaput, J., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf. Journal of Glaciology, 65(254), (2019): 912-925, doi:10.1017/jog.2019.64.The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151 and 1246416. JC was additionally supported by Yates funds in the Colorado State University Department of Mathematics. PDB also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107. We thank Reinhard Flick and Patrick Shore for their support during field work, Tom Bolmer in locating stations and preparing maps, and the US Antarctic Program for logistical support. The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data collected are available through the IRIS Data Management Center under RIS and DRIS network code XH. The PSD-PDFs presented in this study were processed with the IRIS Noise Tool Kit (Bahavar and others, 2013). The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR-1261681 and the DOE National Nuclear Security Administration. The authors appreciate the support of the University of Wisconsin-Madison Automatic Weather Station Program for the data set, data display and information; funded under NSF grant number ANT-1543305. The Ross Ice Shelf profiles were generated using the Antarctic Mapping Tools (Greene and others, 2017). Regional maps were generated with the Generic Mapping Tools (Wessel and Smith, 1998). Topography and bathymetry data for all maps in this study were sourced from the National Geophysical Data Center ETOPO1 Global Relief Model (doi:10.7289/V5C8276M). We thank two anonymous reviewers for suggestions on the scope and organization of this paper
A Comparison of Solar Wind and Estimated Solar System Xenon Abundances: A Test for Solid/ Gas Fractionation in the Solar Nebula
Significant fractionation of dust/gas from the original interstellar cloud during the formation of the solar system is a distinct possibility. Identification of such an effect would provide important clues to nebular processes. Fractionation of volatiles is not constrained by CI abundances and only for the most abundant ones by photospheric observations. The solar Xe elemental abundance is determined here via solar wind measurements from lunar ilmenites and normalized to Si by spacecraft data. The results are compared with estimated abundances assuming no fractionation, which are relatively well constrained
for Xe by s-process calculations, odd-mass abundance interpolations, and odd-even abundance systematics.
When corrected for solar wind/photospheric fractionation, the ^(130)Xe abundance given by surface layer oxidation of ilmenite from soil 71501, exposed within the last - 200 m.y., is 0.24 ± 0.09 normalized to Si = 10^6. This is indistinguishable from the estimates made assuming no solid/gas fractionation. A similar result was obtained for Kr by Wiens et al (1991). Results from breccia 79035 ilmenite, exposed at least ~1 Gy ago, indicate that the solar wind Xe flux may have been significantly higher relative to other noble gases, perhaps due to more efficient Xe ionization. If this is true, fluxes of C and S, which have similar first ionization potentials to Xe, should also be higher in the ancient solar wind from the
same time period, though such variations have not been observed
Recommended from our members
In Search of the Solar Wind Nitrogen Isotope Composition: Analysis of a Gold Plate from the Genesis Spacecraft Concentrator
We report N isotope analysis of a gold plate from the Genesis spacecraft concentrator. We did not find evidence for a light N component in the solar wind
Determining the Elemental and Isotopic Composition of the preSolar Nebula from Genesis Data Analysis: The Case of Oxygen
We compare element and isotopic fractionations measured in solar wind samples
collected by NASA's Genesis mission with those predicted from models
incorporating both the ponderomotive force in the chromosphere and conservation
of the first adiabatic invariant in the low corona. Generally good agreement is
found, suggesting that these factors are consistent with the process of solar
wind fractionation. Based on bulk wind measurements, we also consider in more
detail the isotopic and elemental abundances of O. We find mild support for an
O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A
stronger conclusion must await solar wind regime specific measurements from the
Genesis samples.Comment: 6 pages, accepted by Astrophysical Journal Letter
Velocity structure and lithospheric age of the Gamburtsev Subglacial Mountains
第2回極域科学シンポジウム/第31回極域地学シンポジウム 11月16日(水) 国立国語研究
- …
