3,655 research outputs found

    Graphical Tensor Product Reduction Scheme for the Lie Algebras so(5) = sp(2), su(3), and g(2)

    Full text link
    We develop in detail a graphical tensor product reduction scheme, first described by Antoine and Speiser, for the simple rank 2 Lie algebras so(5) = sp(2), su(3), and g(2). This leads to an efficient practical method to reduce tensor products of irreducible representations into sums of such representations. For this purpose, the 2-dimensional weight diagram of a given representation is placed in a "landscape" of irreducible representations. We provide both the landscapes and the weight diagrams for a large number of representations for the three simple rank 2 Lie algebras. We also apply the algebraic "girdle" method, which is much less efficient for calculations by hand for moderately large representations. Computer code for reducing tensor products, based on the graphical method, has been developed as well and is available from the authors upon request.Comment: 43 pages, 18 figure

    The (2+1)-d U(1) Quantum Link Model Masquerading as Deconfined Criticality

    Get PDF
    The (2+1)(2+1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2+1)(2+1)-d \RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature.Comment: 4.5 pages, 6 figure

    Crystalline Confinement

    Full text link
    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)(2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2)SO(2) global symmetry. The low-energy physics is described by a (2+1)(2+1)-d RP(1)\mathbb{R}P(1) effective field theory, perturbed by a dangerously irrelevant SO(2)SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.Comment: Proceedings of the 31st International Symposium on Lattice Field Theory - LATTICE 201

    From Doubled Chern-Simons-Maxwell Lattice Gauge Theory to Extensions of the Toric Code

    Get PDF
    We regularize compact and non-compact Abelian Chern-Simons-Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R\mathbb{R}, each local Hilbert space is analogous to the one of a charged "particle" moving in the link-pair group space R2\mathbb{R}^2 in a constant "magnetic" background field. In the compact case, the link-pair group space is a torus U(1)2U(1)^2 threaded by kk units of quantized "magnetic" flux, with kk being the level of the Chern-Simons theory. The holonomies of the torus U(1)2U(1)^2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1)U(1) to Z(k)\mathbb{Z}(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern-Simons limit of a large "photon" mass, this results in a Z(k)\mathbb{Z}(k)-symmetric variant of Kitaev's toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle 2πk\frac{2 \pi}{k}. Non-Abelian U(k)U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.Comment: 38 pages, 4 figure

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    Real-Time Simulation of Large Open Quantum Spin Systems driven by Measurements

    Full text link
    We consider a large quantum system with spins 12\frac{1}{2} whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution of a 2-d Heisenberg antiferromagnet, which is driven to a disordered phase, either by sporadic measurements or by continuous monitoring described by Lindblad evolution.Comment: 5 pages, 7 figure

    Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories

    Full text link
    Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.Comment: 12 pages, 5 figures. Main text plus one basic introduction to the topic and one supplementary material on implementation. Final versio

    Random field spin models beyond one loop: a mechanism for decreasing the lower critical dimension

    Full text link
    The functional RG for the random field and random anisotropy O(N) sigma-models is studied to two loop. The ferromagnetic/disordered (F/D) transition fixed point is found to next order in d=4+epsilon for N > N_c (N_c=2.8347408 for random field, N_c=9.44121 for random anisotropy). For N < N_c the lower critical dimension plunges below d=4: we find two fixed points, one describing the quasi-ordered phase, the other is novel and describes the F/D transition. The lower critical dimension can be obtained in an (N_c-N)-expansion. The theory is also analyzed at large N and a glassy regime is found.Comment: 4 pages, 5 figure

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    SO(3) "Nuclear Physics" with ultracold Gases

    Full text link
    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S=3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.Comment: 34 pages, 9 figure
    corecore