2,070 research outputs found
Kinetics of a frictional granular motor
Within the framework of a Boltzmann-Lorentz equation, we analyze the dynamics
of a granular rotor immersed in a bath of thermalized particles in the presence
of a frictional torque on the axis. In numerical simulations of the equation,
we observe two scaling regimes at low and high bath temperatures. In the large
friction limit, we obtain the exact solution of a model corresponding to
asymptotic behavior of the Boltzmann-Lorentz equation. In the limit of large
rotor mass and small friction, we derive a Fokker-Planck equation for which the
exact solution is also obtained.Comment: 4 pages, 4 Figures, To be published in Phys. Rev. Let
Fast beam stacking using RF barriers
Two barrier RF systems were fabricated, tested and installed in the Fermilab
Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90
kHz. When a stationary barrier is combined with a moving barrier, injected
beams from the Booster can be continuously deflected, folded and stacked in the
Main Injector, which leads to doubling of the beam intensity. This paper gives
a report on the beam experiment using this novel technology.Comment: 2007 Particle Accelerator Conference (PAC07
Barrier RF Stacking
A novel wideband RF system, nicknamed the barrier RF, has been designed, fabricated and installed in the Fermilab Main Injector. The cavity is made of seven Finemet cores, and the modulator made of two bipolar high-voltage fast solid-state switches. The system can deliver ±7 kV square pulses at 90 kHz. The main application is to stack two proton batches injected from the Booster and squeeze them into the size of one so that the bunch intensity can be doubled. High intensity beams have been successfully stacked and accelerated to 120 GeV with small losses. The problem of large longitudinal emittance growth is the focus of the present study. An upgraded system with two barrier RF cavities for continuous stacking is under construction. This work is part of the US-Japan collaborative agreement
Hydrous Manganese Oxide Doped Gel Probe Sampler for Measuring In Situ Reductive Dissolution Rates. 2. Field Deployment
In situ rates of reductive dissolution in submerged shoreline sediments at Lake Tegel (Berlin, Germany) were measured with a novel hydrous manganese (Mn) oxide-doped gel probe sampler in concert with equilibrium gel probe and sequential extraction measurements. Rates were low in the top 8 cm, then showed a peak from 8 to 14 cm, with a maximum at 12 cm depth. This rate corresponded with a peak in dissolved porewater iron (Fe) at 11 cm depth. Below 14 cm, the reductive dissolution rate reached an intermediate steady value. Lower rates at depth corresponded with increases in operationally defined fractions of carbonate-bound and organic- and sulfide-bound Mn and Fe as detected by sequential extraction. Observed rates of reductive dissolution, which reflect a capacity for Mn reduction rather than actual rates under ambient conditions, appear to correlate with porewater chemistry and sequential extraction fractions as expected in early sediment diagenesis, and are consistent with previous measurements of in situ reductive dissolution rates. Significant downward advection in this bank filtration setting depletes the Mn and Fe oxides in the sediments and enhances the transport of dissolved Fe and Mn into the infiltrating water
Health related quality of life and future treatment preferences of patients with COPD admitted to UK critical care units from CAOS: The COPD & Asthma outcome study
An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials
A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance
On the role of the Knudsen layer in rapid granular flows
A combination of molecular-dynamics simulations, theoretical predictions, and
previous experiments are used in a two-part study to determine the role of the
Knudsen layer in rapid granular flows. First, a robust criterion for the
identification of the thickness of the Knudsen layer is established: a rapid
deterioration in Navier-Stokes-order prediction of the heat flux is found to
occur in the Knudsen layer. For (experimental) systems in which heat flux
measurements are not easily obtained, a rule-of-thumb for estimating the
Knudsen layer thickness follows, namely that such effects are evident within
2.5 (local) mean free paths of a given boundary. Second, comparisons of
simulation and experimental data with Navier-Stokes order theory are used to
provide a measure as to when Knudsen layer effects become non-negligible.
Specifically, predictions that do not account for the presence of a Knudsen
layer appear reliable for Knudsen layers collectively composing up to 20% of
the domain, whereas deterioration of such predictions becomes apparent when the
domain is fully comprised of the Knudsen layer.Comment: 9 figures, accepted to Journal of Fluid Mechanic
Recommended from our members
Impact Absorbent Rapid Manufactured Structures (IARMS)
Rapid Manufacturing (RM) is increasingly becoming a viable manufacturing process due
to dramatic advantages that it facilitates in the area of design complexity. Through the
exploration of the design freedom afforded by RM, this paper introduces the concept and initial
research surrounding Impact Absorbent Rapid Manufactured Structures (IARMS), with an
application in sports personal protective equipment (PPE). Designs are based on the cellular
structure of foams; the inherent advantages of the cellular structure are used as a basis to create
IARMS that have the potential to be optimised for a specific impact absorbent response. The
paper provides some initial results from compression testingMechanical Engineerin
Design framework for multifunctional additive manufacturing: placement and routing of three-dimensional printed circuit volumes
A framework for the design of additively manufactured (AM) multimaterial parts with embedded functional systems is presented (e.g., structure with electronic/electrical components and associated conductive paths). Two of the key strands of this proposed framework are placement and routing strategies, which consist of techniques to exploit the true-3D design freedoms of multifunctional AM (MFAM) to create 3D printed circuit volumes (PCVs). Example test cases are presented, which demonstrate the appropriateness and effectiveness of the proposed techniques. The aim of the proposed design framework is to enable exploitation of the rapidly developing capabilities of multimaterial AM
- …
