474 research outputs found

    Control of the Dipole Cold Mass Geometry at CERN to Optimize LHC Performance

    Get PDF
    The detailed shape of the 15 m long superconducting LHC dipole cold mass is of high importance as it determines three key parameters: the beam aperture, nominally of the order of 10 beam standard deviations; the connectivity of the beam- and technical lines between magnets; the transverse position of non-linear correctors mounted on the dipole ends. An offset of the latter produces unwanted beam dynamics perturbations. The tolerances are in the order of mm over the length of the magnet. The natural flexibility of the dipole and its mechanical structure allow deformations during handling and transportation which exceed the tolerances. This paper presents the observed deformations of the geometry during handling and various operations at CERN, deformations which are interpreted thanks to a simple mechanical model. These observations have led to a strategy of dipole geometry control at CERN, based on adjustment of the position of its central support (the dipole is supported at three positions, horizontally and vertically) to recover individually or statistically their original shape as manufactured. The implementation of this strategy is discussed, with the goal of finding a compromise between conflicting requirements: quality of the dipole geometry, available resources for corrective actions and magnet installation strategy whereby the geometry tolerances depend on the final magnet position in the machine

    Stability of the Horizontal Curvature of the LHC Cryodipoles During Cold Tests

    Get PDF
    The LHC will be composed of 1232 horizontally curved, 15 meter long, superconducting dipole magnets cooled at 1.9 K. They are supported within their vacuum vessel by three Glass Fiber Reinforced Epoxy (GFRE) support posts. Each cryodipole is individually cold tested at CERN before its installation and interconnection in the LHC 27 km circumference tunnel. As the magnet geometry under cryogenic operation is extremely important for the LHC machine aperture, a new method has been developed at CERN in order to monitor the magnet curvature change between warm and cold states. It enabled us to conclude that there is no permanent horizontal curvature change of the LHC dipole magnet between warm and cold states, although a systematic horizontal transient deformation during cool-down was detected. This deformation generates loads in the dipole supporting system; further investigation permitted us to infer this behavior to the asymmetric thermal contraction of the rigid magnet thermal shield during cool-down. Controlling the helium flow rate in the thermal shield of the cryomagnet enabled us to reduce the maximal deformation by a factor of approximately two, thus increasing significantly the mechanical safety margin of the supporting system during the CERN cold tests

    LHC Superconducting Dipole Production Follow-up: Results of Audit on QA Aspects in Industry

    Get PDF
    The manufacturing of the 1232 Superconducting Main Dipoles for LHC is under way at three European Contractors: Alstom-Jeumont (Consortium), Ansaldo Superconduttori Genova and Babcock Noell Nuclear. The manufacturing is proceeding in a very satisfactory way and in March 2005 the mid production was achieved. To intercept eventually âワweak pointsâ of the production process still present and in order to make a check of the Quality Assurance and Control in place for the series production, an Audit action was launched by CERN during summer-fall 2004. Aspects like: completion of Production and Quality Assurance documentation, structure of QC Teams, traceability, calibration and maintenance for tooling, incoming components inspections, were checked during a total of seven visits at the five different production sites. The results of the Audit in terms of analysis of âワsystematicâ and âワrandomâ problems encountered as well as corrective actions requested are presented

    Performance of the LHC Arc Superconducting Quadrupoles Towards the End of their Series Fabrication

    Get PDF
    The fabrication of the 408 main arc quadrupole magnets and their cold masses will come to an end in summer 2006. A rich collection of measurement and test data has been accumulated and their analysis is presented in this paper. These data cover the fabrication and the efficiency in the use of the main components, the geometrical measurements and the achieved dimensional precision, the warm magnetic measurements in the factory and the performance at cold conditions, especially the training behaviour. The scrap rate of the Nb-Ti/Cu conductor as well as that of other components turned out to be acceptably low and the quench performance measured was in general very good. Most quadrupoles measured so far exceeded the operating field gradient with one or no quench. The multipole content at cold was measured for a limited number of quadrupoles in order to verify the warm-to-cold correlation. From the point of view of field quality, all quadrupoles could be accepted for the machine. The measures taken to overcome the problem of a too high permeability of a batch of collars are discussed

    Long Term Stability of the LHC Superconducting Cryodipoles after Outdoor Storage

    Get PDF
    The main superconducting dipoles for the LHC are being stored outdoors for periods from a few weeks to several years after conditioning with dry nitrogen gas. Such a storage before installation in the 27 km circumference tunnel may affect not only the mechanical and cryogenic functionality of the cryodipoles but also their quench and field performance. A dedicated task force was established to study all aspects of long term behaviour of the stored cryodipoles, with particular emphasis on electrical and vacuum integrity, quench training behaviour, magnetic field quality, performance of the thermal insulation, mechanical stability of magnet shape and of the interface between cold mass and cryostat, degradation ofmaterials and welds. In particular, one specifically selected cryodipole stored outdoors for more than one year, was retested at cold. In addition, various tests have been carried out on the cryodipole assembly and on the most critical subcomponents to study aspects such as the hygrothermal behaviour of the supporting system and the possible oxidation of the Multi Layer Insulation reflective films. This paper summarizes the main investigations carried out and their results

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2 ) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2 mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Warm and Cold Magnetic and Mechanical Alignment Tests of LHC Short Straight Sections

    Get PDF
    This paper contains a summary of the results of the magnetic and mechanical alignment tests performed at CERN on the first 111 arc Short Straight Sections. These include the mechanical axis of the Cold Bore Tube at room temperature, the magnetic axis of main quadrupoles and correctors at both room and cryogenic temperature, and the field direction of the main quadrupoles. The measurements show that the quality of the assemblies is generally within the requirements for the machine

    Magnet Acceptance and Allocation at the LHC Magnet Evaluation Board

    Get PDF
    The normal and superconducting magnets for the LHC ring have been carefully examined to insure that each of about 1900 assemblies is suitable for the operation in the accelerator. Hardware experts and accelerator physicists have contributed to this work that consisted in magnet acceptance, and sorting according to geometry, field quality and quench level. This paper gives a description of the magnet approval mechanism that has been running since four years, reporting in a concise summary the main results achieved
    corecore