6,428 research outputs found
Condensate statistics in interacting Bose gases: exact results
Recently, a Quantum Monte Carlo method alternative to the Path Integral Monte
Carlo method was developed for the numerical solution of the N-boson problem;
it is based on the stochastic evolution of classical fields. Here we apply it
to obtain exact results for the occupation statistics of the condensate mode in
a weakly interacting trapped one-dimensional Bose gas. The temperature is
varied across the critical region down to temperatures lower than the trap
level spacing. We verify that the number-conserving Bogoliubov theory gives
accurate predictions provided that the non-condensed fraction is small.Comment: 4 pages, 3 figures; typo corrected in eq.5; references adde
Sandstone Pore Aspect Ratio Spectra from Direct Observations and Velocity Inversion
Measurements of pore shapes from Scanning Electron Microscope (SEM) images
for three sandstone samples (the Navajo Sandstone, the Weber Sandstone, and the
Kayenta Sandstone) are compared to the aspect ratio spectra obtained from
inverting laboratory velocity versus pressure data using the method of Cheng and
Toksoz (1979). The results indicate that the inversion method is in very good
agreement with the observations at high aspect ratios ( ex > 0.0 1). At low aspect ratios the agreement is very good for the clean Navajo Sandstone sample, but poor
for the Weber and Kayenta samples which contain clay. The Navajo sample is
composed chiefly of quartz with significant pressure dissolution apparent along grain
contacts resulting in smooth, flat cracks between grains. The Weber and Kayenta
samples have rougher crack surfaces as well as tapered pore edges, indicating that
asperities ,and non-elliptical pore shapes may result in an over estimation of low
aspect ratio cracks by velocity inversion. The presence of degraded feldspars may
also play a role.Phillips Petroleum Fellowshi
Pseudorapidity Distribution of Charged Particles in PbarP Collisions at root(s)= 630GeV
Using a silicon vertex detector, we measure the charged particle
pseudorapidity distribution over the range 1.5 to 5.5 using data collected from
PbarP collisions at root s = 630 GeV. With a data sample of 3 million events,
we deduce a result with an overall normalization uncertainty of 5%, and typical
bin to bin errors of a few percent. We compare our result to the measurement of
UA5, and the distribution generated by the Lund Monte Carlo with default
settings. This is only the second measurement at this level of precision, and
only the second measurement for pseudorapidity greater than 3.Comment: 9 pages, 5 figures, LaTeX format. For ps file see
http://hep1.physics.wayne.edu/harr/harr.html Submitted to Physics Letters
Quantized Roentgen Effect in Bose-Einstein Condensates
A classical dielectric moving in a charged capacitor can create a magnetic
field (Roentgen effect). A quantum dielectric, however, will not produce a
magnetization, except at vortices. The magnetic field outside the quantum
dielectric appears as the field of quantized monopoles
Quantum Games and Quantum Strategies
We investigate the quantization of non-zero sum games. For the particular
case of the Prisoners' Dilemma we show that this game ceases to pose a dilemma
if quantum strategies are allowed for. We also construct a particular quantum
strategy which always gives reward if played against any classical strategy.Comment: 4 pages, 4 figures, typographic sign error in the definition of the
operator J correcte
Phonon spectrum and dynamical stability of a quantum degenerate Bose-Fermi mixture
We calculate the phonon excitation spectrum in a zero-temperature
boson-fermion mixture. We show how the sound velocity changes due to the
boson-fermion interaction and we determine the dynamical stability regime of a
homogeneous mixture. We identify a resonant phonon-exchange interaction between
the fermions as the physical mechanism leading to the instability.Comment: 4 pages, 3 figure
A semi-classical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions
We develop a semi-classical field method for the study of the weakly
interacting Bose gas at finite temperature, which, contrarily to the usual
classical field model, does not suffer from an ultraviolet cut-off dependence.
We apply the method to the study of thermal vortices in spatially homogeneous,
two-dimensional systems. We present numerical results for the vortex density
and the vortex pair distribution function. Insight in the physics of the system
is obtained by comparing the numerical results with the predictions of simple
analytical models. In particular, we calculate the activation energy required
to form a vortex pair at low temperature.Comment: 19 page
Quantum Games
In these lecture notes we investigate the implications of the identification
of strategies with quantum operations in game theory beyond the results
presented in [J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett. 83,
3077 (1999)]. After introducing a general framework, we study quantum games
with a classical analogue in order to flesh out the peculiarities of game
theoretical settings in the quantum domain. Special emphasis is given to a
detailed investigation of different sets of quantum strategies.Comment: 13 pages (LaTeX), 3 figure
Mesoscopic Fermi gas in a harmonic trap
We study the thermodynamical properties of a mesoscopic Fermi gas in view of
recent possibilities to trap ultracold atoms in a harmonic potential. We focus
on the effects of shell closure for finite small atom numbers. The dependence
of the chemical potential, the specific heat and the density distribution on
particle number and temperature is obtained. Isotropic and anisotropic traps
are compared. Possibilities of experimental observations are discussed.Comment: 8 pages, 9 eps-figures included, Revtex, submitted to Phys. Rev. A,
minor changes to figures and captions, corrected typo
Anomalous fluctuations of the condensate in interacting Bose gases
We find that the fluctuations of the condensate in a weakly interacting Bose
gas confined in a box of volume follow the law . This anomalous behaviour arises from the occurrence of infrared
divergencies due to phonon excitations and holds also for strongly correlated
Bose superfluids. The analysis is extended to an interacting Bose gas confined
in a harmonic trap where the fluctuations are found to exhibit a similar
anomaly.Comment: 4 pages, RevTe
- …
