3,027 research outputs found

    Scaling graphs of heart rate time series in athletes demonstrate the VLF, LF and HF regions

    Full text link
    Scaling analysis of heart rate time series has emerged as an useful tool for assessment of autonomic cardiac control. We investigate the heart rate time series of ten athletes (five males and five females), by applying detrended fluctuation analysis (DFA). High resolution ECGs are recorded under standardized resting conditions over 30 minutes and subsequently heart rate time series are extracted and artefacts filtered. We find three distinct regions of scale-invariance, which correspond to the well-known VLF, LF, and HF bands in the power spectra of heart rate variability. The scaling exponents alpha are alphaHF: 1.15 [0.96-1.22], alphaLF: 0.68 [0.57-0.84], alphaVLF: 0.83[0.82-0.99]; p<10^-5). In conclusion, DFA scaling exponents of heart rate time series should be fitted to the VLF, LF, and HF ranges, respectively

    The structure of radiative shock waves. III. The model grid for partially ionized hydrogen gas

    Full text link
    The grid of the models of radiative shock waves propagating through partially ionized hydrogen gas with temperature 3000K <= T_1 <= 8000K and density 10^{-12} gm/cm^3 <= \rho_1 <= 10^{-9}gm/cm^3 is computed for shock velocities 20 km/s <= U_1 <= 90 km/s. The fraction of the total energy of the shock wave irreversibly lost due to radiation flux ranges from 0.3 to 0.8 for 20 km/s <= U_1 <= 70 km/s. The postshock gas is compressed mostly due to radiative cooling in the hydrogen recombination zone and final compression ratios are within 1 <\rho_N/\rho_1 \lesssim 10^2, depending mostly on the shock velocity U_1. The preshock gas temperature affects the shock wave structure due to the equilibrium ionization of the unperturbed hydrogen gas, since the rates of postshock relaxation processes are very sensitive to the number density of hydrogen ions ahead the discontinuous jump. Both the increase of the preshock gas temperature and the decrease of the preshock gas density lead to lower postshock compression ratios. The width of the shock wave decreases with increasing upstream velocity while the postshock gas is still partially ionized and increases as soon as the hydrogen is fully ionized. All shock wave models exhibit stronger upstream radiation flux emerging from the preshock outer boundary in comparison with downstream radiation flux emerging in the opposite direction from the postshock outer boundary. The difference between these fluxes depends on the shock velocity and ranges from 1% to 16% for 20 km/s <= U_1 <= 60 km/s. The monochromatic radiation flux transported in hydrogen lines significantly exceeds the flux of the background continuum and all shock wave models demonstrate the hydrogen lines in emission.Comment: 11 pages, 11 figures, LaTeX, to appear in A

    Lower Extremity Strength and Mechanics During Jumping in Women With Patellofemoral Pain

    Get PDF
    Context: Lower extremity (LE) weakness might be associated with altered mechanics during weight bearing in subjects with patellofemoral pain syndrome (PFPS). Objective: To analyze LE strength, mechanics, and the association between these variables among women with and without PFPS during a simulated athletic task. Design: Case control. Setting: Motion-analysis laboratory. Subjects: 20 women with PFPS and 20 healthy women. Main Outcome Measures: Peak isometric lateral trunk-flexion, hipabduction, hip external-rotation, knee-flexion, and knee-extension strength, as well as hip- and knee-joint excursions and angular impulses during single-leg jumps. Results: PFPS subjects produced less hip-abduction, hip external-rotation, and trunk lateral- flexion force than the control group. The PFPS group also demonstrated greater hipadduction excursion and hip-abduction impulses. The association between the strength measurements and LE mechanics was low. Conclusions: Women with PFPS demonstrate specific weaknesses and altered LE mechanics. Weakness is not, however, highly correlated with observed differences in mechanics. ABSTRACT FROM AUTHO

    Effects of Medially Wedged Foot Orthoses on Knee and Hip Joint Running Mechanics in Females With and Without Patellofemoral Pain Syndrome.

    Get PDF
    We examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome (PFPS). We also tested if these effects depend on standing calcaneal eversion angle. Twenty female runners with and without PFPS participated. Knee and hip joint transverse and frontal plane peak angle, excursion, and peak internal knee and hip abduction moment were calculated while running with and without a 6° full-length medially wedged foot orthoses. Separate 3-factor mixed ANOVAs (group [PFPS, control] x condition [medial wedge, no medial wedge] x standing calcaneal angle [everted, neutral, inverted]) were used to test the effect of medially wedged orthoses on each dependent variable. Knee abduction moment increased 3% (P = .03) and hip adduction excursion decreased 0.6° (P < .01) using medially wedged foot orthoses. No significant group x condition or calcaneal angle x condition effects were observed. The addition of medially wedged foot orthoses to standardized running shoes had minimal effect on knee and hip joint mechanics during running thought to be associated with the etiology or exacerbation of PFPS symptoms. These effects did not appear to depend on injury status or standing calcaneal posture. ABSTRACT FROM AUTHO

    A Note on Encodings of Phylogenetic Networks of Bounded Level

    Full text link
    Driven by the need for better models that allow one to shed light into the question how life's diversity has evolved, phylogenetic networks have now joined phylogenetic trees in the center of phylogenetics research. Like phylogenetic trees, such networks canonically induce collections of phylogenetic trees, clusters, and triplets, respectively. Thus it is not surprising that many network approaches aim to reconstruct a phylogenetic network from such collections. Related to the well-studied perfect phylogeny problem, the following question is of fundamental importance in this context: When does one of the above collections encode (i.e. uniquely describe) the network that induces it? In this note, we present a complete answer to this question for the special case of a level-1 (phylogenetic) network by characterizing those level-1 networks for which an encoding in terms of one (or equivalently all) of the above collections exists. Given that this type of network forms the first layer of the rich hierarchy of level-k networks, k a non-negative integer, it is natural to wonder whether our arguments could be extended to members of that hierarchy for higher values for k. By giving examples, we show that this is not the case

    Folding and unfolding phylogenetic trees and networks

    Get PDF
    Phylogenetic networks are rooted, labelled directed acyclic graphs which are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network NN can be "unfolded" to obtain a MUL-tree U(N)U(N) and, conversely, a MUL-tree TT can in certain circumstances be "folded" to obtain a phylogenetic network F(T)F(T) that exhibits TT. In this paper, we study properties of the operations UU and FF in more detail. In particular, we introduce the class of stable networks, phylogenetic networks NN for which F(U(N))F(U(N)) is isomorphic to NN, characterise such networks, and show that they are related to the well-known class of tree-sibling networks.We also explore how the concept of displaying a tree in a network NN can be related to displaying the tree in the MUL-tree U(N)U(N). To do this, we develop a phylogenetic analogue of graph fibrations. This allows us to view U(N)U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N)U(N) and reconcilingphylogenetic trees with networks

    Photobase Generator Enabled Pitch Division: A Progress Report

    Get PDF
    Pitch division lithography (PDL) with a photobase generator (PBG) allows printing of grating images with twice the pitch of a mask. The proof-of-concept has been published in the previous paper[1, 2] and demonstrated by others[1]. Forty five nm half-pitch (HP) patterns were produced using a 90nm HP mask, but the image had line edge roughness (LER) that does not meet requirements. Efforts have been made to understand and improve the LER in this process. Challenges were summarized toward low LER and good performing pitch division. Simulations and analysis showed the necessity for an optical image that is uniform in the z direction in order for pitch division to be successful. Two-stage PBGs were designed for enhancement of resist chemical contrast. New pitch division resists with polymer-bound PAGs and PBGs, and various PBGs were tested. This paper focuses on analysis of the LER problems and efforts to improve patterning performance in pitch division lithography.Chemical Engineerin
    corecore