5,050 research outputs found
Whites' perceptions of biracial individuals' race shift when biracials speak out against bias
Previous research suggests that a person’s racial identity shapes the way others respond when that person speaks out against racial prejudice. In the present research, we consider instead how speaking out against racial prejudice shapes people’s impressions of a confronter’s racial identity, such as experiences with discrimination, stereotype enactment, and even phenotype. Two experiments found that White perceivers evaluated a Black/White biracial person who spoke out against (versus remained silent to) racial prejudice as more stigmatized and Black-identified, and as having more stereotypically Black (vs. White) preferences and Black (vs. White) ancestry when they confronted. The faces of biracial confronters (vs. non-confronters) were also recalled as more phenotypically Black (vs. White; Study 2). This evidence suggests that speaking out against bias colors Whites’ impressions of a biracial target across both subjective and objective measures of racial identity. Implications for interracial interactions and interpersonal perception are discussed
Recommended Locations of Beam Loss Monitors for the ATLAS Roman Pots
This note suggests suitable locations to position beam loss monitors to observe losses on the ATLAS Roman Pot station located close to 240m from IP1. This monitoring is envisaged to help to avoid quenches of the super- conducting magnets downstream of the roman pots and to avert damage to either the LHC machine elements or the roman pot detectors. The results presented in this note indicate the locations where the BLMs should be installed. The recommended locations are determined using previous simulation results on BLM response to losses; therefore these results should be considered in conjunction with the previous results. A more detailed note on the topic will follow later
A Predictive Algorithm For Wetlands In Deep Time Paleoclimate Models
Methane is a powerful greenhouse gas produced in wetland environments via microbial action in anaerobic conditions. If the location and extent of wetlands are unknown, such as for the Earth many millions of years in the past, a model of wetland fraction is required in order to calculate methane emissions and thus help reduce uncertainty in the understanding of past warm greenhouse climates. Here we present an algorithm for predicting inundated wetland fraction for use in calculating wetland methane emission fluxes in deep time paleoclimate simulations. The algorithm determines, for each grid cell in a given paleoclimate simulation, the wetland fraction predicted by a nearest neighbours search of modern day data in a space described by a set of environmental, climate and vegetation variables. To explore this approach, we first test it for a modern day climate with variables obtained from observations and then for an Eocene climate with variables derived from a fully coupled global climate model (HadCM3BL-M2.2). Two independent dynamic vegetation models were used to provide two sets of equivalent vegetation variables which yielded two different wetland predictions. As a first test the method, using both vegetation models, satisfactorily reproduces modern data wetland fraction at a course grid resolution, similar to those used in paleoclimate simulations. We then applied the method to an early Eocene climate, testing its outputs against the locations of Eocene coal deposits. We predict global mean monthly wetland fraction area for the early Eocene of 8 to 10 × 106km2 with corresponding total annual methane flux of 656 to 909 Tg, depending on which of two different dynamic global vegetation models are used to model wetland fraction and methane emission rates. Both values are significantly higher than estimates for the modern-day of 4 × 106km2 and around 190Tg (Poulter et. al. 2017, Melton et. al., 2013
Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling
In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving ~he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required to obtain usable convergence from an iterative solver. The authors have examined the use of an Incomplete LU Threshold (ILUT) preconditioner . to solver linear systems stemming from higher order BEM/FEM formulations in 2D scattering problems. Although the resulting preconditioner provided aD excellent approximation to the system inverse, its size in terms of non-zero entries represented only a modest improvement when compared with the fill-in associated with a sparse direct solver. Furthermore, the fill-in of the preconditioner could not be substantially reduced without the occurrence of instabilities. In addition to the results for these 2D problems, the authors will present iterative solution data from the application of the ILUT preconditioner to 3D problems
Effects of High Charge Densities in Multi-GEM Detectors
A comprehensive study, supported by systematic measurements and numerical
computations, of the intrinsic limits of multi-GEM detectors when exposed to
very high particle fluxes or operated at very large gains is presented. The
observed variations of the gain, of the ion back-flow, and of the pulse height
spectra are explained in terms of the effects of the spatial distribution of
positive ions and their movement throughout the amplification structure. The
intrinsic dynamic character of the processes involved imposes the use of a
non-standard simulation tool for the interpretation of the measurements.
Computations done with a Finite Element Analysis software reproduce the
observed behaviour of the detector. The impact of this detailed description of
the detector in extreme conditions is multiple: it clarifies some detector
behaviours already observed, it helps in defining intrinsic limits of the GEM
technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu
Pengaruh Ukuran Perusahaan, Return on Asset Dan Net Profit Margin Terhadap Perataan Laba (Income Smoothing) (Studi Pada Perusahaan Manufaktur Yang Terdaftar Di Bei 2012-2014)
The work of company needed by investors because could affect the willingness of investors to plant or withdraw their investments, instrument companies used in his work is earnings information. Earnings management is most used by companies is income smoothing. Agency theory the concept of income smoothing, pincipal and agents have motivation. This research to understand and explain; variable influence size firm, return on asset and the net profit margin partial against the income smoothing; variable influence size firm, return on asset and net profit margin simultaneously against the income smoothing. The kind of research used this research is an explanation with a quantitative approach. The variable in this research is size firm, return on asset and net profit margin as independent variables and income smoothing as dependent variable. This research used secondary data time series from the period 2012 to 2014. Data analysis method used is descriptive analysis and multiple linear regression analysis. The results of multiple linear regression analysis showed; there are partial effect between size firm variables, return on asset and net profit margin to the income smoothing; there is a partial effect between size firm variables, return on asset and net profit margin to the income smoothing
Expected Performance of TOTEM BLMS at the LHC
The TOTEM experiment at the LHC will operate down to 10 sigma from the beam in the forward region of the CMS experiment. The associated beam loss monitors (BLMs) are crucial to monitor the position of the detectors and to provide a rapid identification of abnormal beam conditions for machine protection purposes. In this paper, the response of the TOTEM BLMs is considered for nominal machine operation and the protection thresholds are defined, withcalculations made of the expected signal fromprotons grazing the TOTEM pot as a function of pot distance from the beam, and the BLM signal from proton collisions at the CMS beam interaction point
Issues and Methods Concerning the Evaluation of Hypersingular and Near-Hypersingular Integrals in BEM Formulations
It is known that higher order modeling of the sources and the geometry in Boundary Element Modeling (BEM) formulations is essential to highly efficient computational electromagnetics. However, in order to achieve the benefits of hIgher order basis and geometry modeling, the singular and near-singular terms arising in BEM formulations must be integrated accurately. In particular, the accurate integration of near-singular terms, which occur when observation points are near but not on source regions of the scattering object, has been considered one of the remaining limitations on the computational efficiency of integral equation methods. The method of singularity subtraction has been used extensively for the evaluation of singular and near-singular terms. Piecewise integration of the source terms in this manner, while manageable for bases of constant and linear orders, becomes unwieldy and prone to error for bases of higher order. Furthermore, we find that the singularity subtraction method is not conducive to object-oriented programming practices, particularly in the context of multiple operators. To extend the capabilities, accuracy, and maintainability of general-purpose codes, the subtraction method is being replaced in favor of the purely numerical quadrature schemes. These schemes employ singularity cancellation methods in which a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. An example of the sin,oularity cancellation approach is the Duffy method, which has two major drawbacks: 1) In the resulting integrand, it produces an angular variation about the singular point that becomes nearly-singular for observation points close to an edge of the parent element, and 2) it appears not to work well when applied to nearly-singular integrals. Recently, the authors have introduced the transformation u(x(prime))= sinh (exp -1) x(prime)/Square root of ((y prime (exp 2))+ z(exp 2) for integrating functions of the form I = Integral of (lambda(r(prime))((e(exp -jkR))/(4 pi R) d D where A (r (prime)) is a vector or scalar basis function and R = Square root of( (x(prime)(exp2) + (y(prime)(exp2) + z(exp 2)) is the distance between source and observation points. This scheme has all of the advantages of the Duffy method while avoiding the disadvantages listed above. In this presentation we will survey similar approaches for handling singular and near-singular terms for kernels with 1/R(exp 2) type behavior, addressing potential pitfalls and offering techniques to efficiently handle special cases
Recommended Locations of Beam Loss Monitors for the TOTEM Roman Pots
This note presents results from simulations of losses on the TOTEM Roman Pot stations located close to 150m and 220m from IP5. These results are used to evaluate suitable locations to position beam loss monitors to monitor these losses, and help to avoid quenches of the super-conducting magnets downstream of the roman pots. The results presented in this note indicate the locations where the BLMs should be installed. A more detailed note on the topic will follow later
- …
