293 research outputs found
Resonant photon absorption and hole burning in Cr7Ni antiferromagnetic rings
Presented are magnetization measurements on a crystal of Cr7Ni
antiferromagnetic rings. Irradiation with microwaves at frequencies between 1
and 10 GHz leads to observation of very narrow resonant photon absorption lines
which are mainly broadened by hyperfin interactions. A two-pulse hole burning
technique allowed us to estimate the characteristic energy diffusion time.Comment: 4 pages, 5 figure
Molecular engineering of antiferromagnetic rings for quantum computation
The substitution of one metal ion in a Cr-based molecular ring with dominant
antiferromagnetic couplings allows to engineer its level structure and
ground-state degeneracy. Here we characterize a Cr7Ni molecular ring by means
of low-temperature specific-heat and torque-magnetometry measurements, thus
determining the microscopic parameters of the corresponding spin Hamiltonian.
The energy spectrum and the suppression of the leakage-inducing S-mixing render
the Cr7Ni molecule a suitable candidate for the qubit implementation, as
further substantiated by our quantum-gate simulations.Comment: To appear in Physical Review Letter
Bounding and approximating parabolas for the spectrum of Heisenberg spin systems
We prove that for a wide class of quantum spin systems with isotropic
Heisenberg coupling the energy eigenvalues which belong to a total spin quantum
number S have upper and lower bounds depending at most quadratically on S. The
only assumption adopted is that the mean coupling strength of any spin w.r.t.
its neighbours is constant for all N spins. The coefficients of the bounding
parabolas are given in terms of special eigenvalues of the N times N coupling
matrix which are usually easily evaluated. In addition we show that the
bounding parabolas, if properly shifted, provide very good approximations of
the true boundaries of the spectrum. We present numerical examples of
frustrated rings, a cube, and an icosahedron.Comment: 8 pages, 3 figures. Submitted to Europhysics Letter
Quantum information analysis of electronic states at different molecular structures
We have studied transition metal clusters from a quantum information theory
perspective using the density-matrix renormalization group (DMRG) method. We
demonstrate the competition between entanglement and interaction localization.
We also discuss the application of the configuration interaction based
dynamically extended active space procedure which significantly reduces the
effective system size and accelerates the speed of convergence for complicated
molecular electronic structures to a great extent. Our results indicate the
importance of taking entanglement among molecular orbitals into account in
order to devise an optimal orbital ordering and carry out efficient
calculations on transition metal clusters. We propose a recipe to perform DMRG
calculations in a black-box fashion and we point out the connections of our
work to other tensor network state approaches
Recipes for spin-based quantum computing
Technological growth in the electronics industry has historically been
measured by the number of transistors that can be crammed onto a single
microchip. Unfortunately, all good things must come to an end; spectacular
growth in the number of transistors on a chip requires spectacular reduction of
the transistor size. For electrons in semiconductors, the laws of quantum
mechanics take over at the nanometre scale, and the conventional wisdom for
progress (transistor cramming) must be abandoned. This realization has
stimulated extensive research on ways to exploit the spin (in addition to the
orbital) degree of freedom of the electron, giving birth to the field of
spintronics. Perhaps the most ambitious goal of spintronics is to realize
complete control over the quantum mechanical nature of the relevant spins. This
prospect has motivated a race to design and build a spintronic device capable
of complete control over its quantum mechanical state, and ultimately,
performing computations: a quantum computer.
In this tutorial we summarize past and very recent developments which point
the way to spin-based quantum computing in the solid-state. After introducing a
set of basic requirements for any quantum computer proposal, we offer a brief
summary of some of the many theoretical proposals for solid-state quantum
computers. We then focus on the Loss-DiVincenzo proposal for quantum computing
with the spins of electrons confined to quantum dots. There are many obstacles
to building such a quantum device. We address these, and survey recent
theoretical, and then experimental progress in the field. To conclude the
tutorial, we list some as-yet unrealized experiments, which would be crucial
for the development of a quantum-dot quantum computer.Comment: 45 pages, 12 figures (low-res in preprint, high-res in journal)
tutorial review for Nanotechnology; v2: references added and updated, final
version to appear in journa
On the possibility of magneto-structural correlations: detailed studies of di-nickel carboxylate complexes
A series of water-bridged dinickel complexes of the general formula [Ni<sub>2</sub>(μ<sub>2</sub>-OH<sub>2</sub>)(μ2-
O<sub>2</sub>C<sup>t</sup>Bu)<sub>2</sub>(O<sub>2</sub>C<sup>t</sup>Bu)2(L)(L0)] (L = HO<sub>2</sub>C<sup>t</sup>Bu, L0 = HO<sub>2</sub>C<sup>t</sup>Bu (1), pyridine (2),
3-methylpyridine (4); L = L0 = pyridine (3), 3-methylpyridine (5)) has been synthesized
and structurally characterized by X-ray crystallography. The magnetic properties
have been probed by magnetometry and EPR spectroscopy, and detailed measurements
show that the axial zero-field splitting, D, of the nickel(ii) ions is on the same order as
the isotropic exchange interaction, J, between the nickel sites. The isotropic exchange
interaction can be related to the angle between the nickel centers and the bridging
water molecule, while the magnitude of D can be related to the coordination sphere at
the nickel sites
Early adulthood socioeconomic trajectories contribute to inequalities in adult cardiovascular health, independently of childhood and adulthood socioeconomic position
Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering
Molecular nanomagnets are among the first examples of spin systems of finite
size and have been test-beds for addressing a range of elusive but important
phenomena in quantum dynamics. In fact, for short-enough timescales the spin
wavefunctions evolve coherently according to the an appropriate cluster
spin-Hamiltonian, whose structure can be tailored at the synthetic level to
meet specific requirements. Unfortunately, to this point it has been impossible
to determine the spin dynamics directly. If the molecule is sufficiently
simple, the spin motion can be indirectly assessed by an approximate model
Hamiltonian fitted to experimental measurements of various types. Here we show
that recently-developed instrumentation yields the four-dimensional
inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal
space and enables the spin dynamics to be determined with no need of any model
Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to
demonstrate the potential of this new approach. For the first time we extract a
model-free picture of the quantum dynamics of a molecular nanomagnet. This
allows us, for example, to examine how a quantum fluctuation propagates along
the ring and to directly test the degree of validity of the
N\'{e}el-vector-tunneling description of the spin dynamics
The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)
Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-
Modelling Conformational Flexibility in a Spectrally Addressable Molecular Multi-Qubit Model System
Dipolar coupled multi-spin systems have the potential to be used as molecular qubits. Herein we report the synthesis of a molecular multi-qubit model system with three individually addressable, weakly interacting, spin (Formula presented.) centres of differing g-values. We use pulsed Electron Paramagnetic Resonance (EPR) techniques to characterise and separately address the individual electron spin qubits; CuII, Cr7Ni ring and a nitroxide, to determine the strength of the inter-qubit dipolar interaction. Orientation selective Relaxation-Induced Dipolar Modulation Enhancement (os-RIDME) detecting across the CuII spectrum revealed a strongly correlated CuII-Cr7Ni ring relationship; detecting on the nitroxide resonance measured both the nitroxide and CuII or nitroxide and Cr7Ni ring correlations, with switchability of the interaction based on differing relaxation dynamics, indicating a handle for implementing EPR-based quantum information processing (QIP) algorithms
- …
