1,275 research outputs found

    Neutrino telescope modelling of Lorentz invariance violation in oscillations of atmospheric neutrinos

    Get PDF
    One possible feature of quantum gravity may be the violation of Lorentz invariance. In this paper, we consider one particular manifestation of the violation of Lorentz invariance, namely modified dispersion relations for massive neutrinos. We show how such modified dispersion relations may affect atmospheric neutrino oscillations. We then consider how neutrino telescopes, such as ANTARES, may be able to place bounds on the magnitude of this type of Lorentz invariance violation

    Quantum Decoherence in a Four-Dimensional Black Hole Background

    Get PDF
    We display a logarithmic divergence in the density matrix of a scalar field in the presence of an Einstein-Yang-Mills black hole in four dimensions. This divergence is related to a previously-found logarithmic divergence in the entropy of the scalar field, which cannot be absorbed into a renormalization of the Hawking-Bekenstein entropy of the black hole. As the latter decays, the logarithmic divergence induces a non-commutator term \nd{\delta H}\rho in the quantum Liouville equation for the density matrix ρ\rho of the scalar field, leading to quantum decoherence. The order of magnitude of \nd{\delta H} is μ2/MP\mu^2/M_P, where μ\mu is the mass of the scalar particle.Comment: 13-pages LATE

    Characterizing asymptotically anti-de Sitter black holes with abundant stable gauge field hair

    Get PDF
    In the light of the "no-hair" conjecture, we revisit stable black holes in su(N) Einstein-Yang-Mills theory with a negative cosmological constant. These black holes are endowed with copious amounts of gauge field hair, and we address the question of whether these black holes can be uniquely characterized by their mass and a set of global non-Abelian charges defined far from the black hole. For the su(3) case, we present numerical evidence that stable black hole configurations are fixed by their mass and two non-Abelian charges. For general N, we argue that the mass and N-1 non-Abelian charges are sufficient to characterize large stable black holes, in keeping with the spirit of the "no-hair" conjecture, at least in the limit of very large magnitude cosmological constant and for a subspace containing stable black holes (and possibly some unstable ones as well).Comment: 33 pages, 13 figures, minor change

    Comparison of mercury in atmospheric deposition and in Illinois and USA soils

    No full text
    International audienceIt has been reported that most mercury (Hg) in USA soils is from atmospheric Hg deposition, mostly from anthropogenic sources. This paper compares the rates of atmospheric Hg deposition to amounts of Hg in Illinois and USA soils. The amounts of Hg in these soils are too great to be attributed mainly to anthropogenic atmospheric Hg deposition. Keywords: mercury, atmospheric deposition, soil, geology, Illinois, US

    Decoherent Scattering of Light Particles in a D-Brane Background

    Get PDF
    We discuss the scattering of two light particles in a D-brane background. It is known that, if one light particle strikes the D brane at small impact parameter, quantum recoil effects induce entanglement entropy in both the excited D brane and the scattered particle. In this paper we compute the asymptotic `out' state of a second light particle scattering off the D brane at large impact parameter, showing that it also becomes mixed as a consequence of quantum D-brane recoil effects. We interpret this as a non-factorizing contribution to the superscattering operator S-dollar for the two light particles in a Liouville D-brane background, that appears when quantum D-brane excitations are taken into account.Comment: 18 pages LATEX, one figure (incorporated

    Geon black holes and quantum field theory

    Full text link
    Black hole spacetimes that are topological geons in the sense of Sorkin can be constructed by taking a quotient of a stationary black hole that has a bifurcate Killing horizon. We discuss the geometric properties of these geon black holes and the Hawking-Unruh effect on them. We in particular show how correlations in the Hawking-Unruh effect reveal to an exterior observer features of the geometry that are classically confined to the regions behind the horizons.Comment: 11 pages. Talk given at the First Mediterranean Conference on Classical and Quantum Gravity, Kolymbari (Crete, Greece), September 2009. Dedicated to Rafael Sorkin. v2: typesetting bug fixe

    Instability of a four-dimensional de Sitter black hole with a conformally coupled scalar field

    Get PDF
    We study the stability of new neutral and electrically charged four-dimensional black hole solutions of Einstein's equations with a positive cosmological constant and conformally coupled scalar field. The neutral black holes are always unstable. The charged black holes are also shown analytically to be unstable for the vast majority of the parameter space of solutions, and we argue using numerical techniques that the configurations corresponding to the remainder of the parameter space are also unstable.Comment: revtex4, 8 pages, 4 figures, minor changes, accepted for publication in Phys. Rev.

    Dressing a black hole with non-minimally coupled scalar field hair

    Get PDF
    We investigate the possibility of dressing a four-dimensional black hole with classical scalar field hair which is non-minimally coupled to the space-time curvature. Our model includes a cosmological constant but no self-interaction potential for the scalar field. We are able to rule out black hole hair except when the cosmological constant is negative and the constant governing the coupling to the Ricci scalar curvature is positive. In this case, non-trivial hairy black hole solutions exist, at least some of which are linearly stable. However, when the coupling constant becomes too large, the black hole hair becomes unstable.Comment: 17 pages, 7 figures, uses iopart.cls. Minor changes, accepted for publication in Classical and Quantum Gravit

    Do stringy corrections stabilize coloured black holes?

    Get PDF
    We consider hairy black hole solutions of Einstein-Yang-Mills-Dilaton theory, coupled to a Gauss-Bonnet curvature term, and we study their stability under small, spacetime-dependent perturbations. We demonstrate that the stringy corrections do not remove the sphaleronic instabilities of the coloured black holes with the number of unstable modes being equal to the number of nodes of the background gauge function. In the gravitational sector, and in the limit of an infinitely large horizon, the coloured black holes are also found to be unstable. Similar behaviour is exhibited by the magnetically charged black holes while the bulk of the neutral black holes are proven to be stable under small, gauge-dependent perturbations. Finally, the electrically charged black holes are found to be characterized only by the existence of a gravitational sector of perturbations. As in the case of neutral black holes, we demonstrate that for the bulk of electrically charged black holes no unstable modes arise in this sector.Comment: 17 pages, Revtex, comments and a reference added, version to appear in Physical Review

    Probing quantum decoherence in atmospheric neutrino oscillations with a neutrino telescope

    Get PDF
    Quantum decoherence, the evolution of pure states into mixed states, may be a feature of quantum gravity. In this paper, we show how these effects can be modelled for atmospheric neutrinos and illustrate how the standard oscillation picture is modified. We examine how neutrino telescopes, such as ANTARES, are able to place upper bounds on these quantum decoherence effects
    corecore