3,904 research outputs found
Nanoscale austenite reversion through partitioning, segregation, and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel
Austenite reversion during tempering of a Fe-13.6Cr-0.44C (wt.%) martensite
results in an ultrahigh strength ferritic stainless steel with excellent
ductility. The austenite reversion mechanism is coupled to the kinetic freezing
of carbon during low-temperature partitioning at the interfaces between
martensite and retained austenite and to carbon segregation at
martensite-martensite grain boundaries. An advantage of austenite reversion is
its scalability, i.e., changing tempering time and temperature tailors the
desired strength-ductility profiles (e.g. tempering at 400{\deg}C for 1 min.
produces a 2 GPa ultimate tensile strength (UTS) and 14% elongation while 30
min. at 400{\deg}C results in a UTS of ~ 1.75 GPa with an elongation of 23%).
The austenite reversion process, carbide precipitation, and carbon segregation
have been characterized by XRD, EBSD, TEM, and atom probe tomography (APT) in
order to develop the structure-property relationships that control the
material's strength and ductility.Comment: in press Acta Materialia 201
The Shape of Covariantly Smeared Sources in Lattice QCD
Covariantly smeared sources are commonly used in lattice QCD to enhance the
projection onto the ground state. Here we investigate the dependence of their
shape on the gauge field background and find that the presence of localized
concentrations of magnetic field can lead to strong distortions which reduce
the smearing radii achievable by iterative smearing prescriptions. In
particular, as , iterative procedures like Jacobi smearing require
increasingly large iteration counts in order to reach physically-sized smearing
radii 0.5 fm, and the resulting sources are strongly distorted. To
bypass this issue, we propose a covariant smearing procedure (``free-form
smearing'') that allows us to create arbitrarily shaped sources, including in
particular Gaussians of arbitrary radius.Comment: 1+15 pages, 7 figures (24 pdf images
Improved interpolating fields for hadrons at non-vanishing momentum
We demonstrate that a reduction in the noise-to-signal ratio may be obtained
for hadrons at non-zero momenta whilst maintaining a good overlap with the
ground state through a generalisation of Gaussian/Wuppertal smearing. The use
of an anisotropic smearing wavefunction is motivated by the physical picture of
a boosted hadron.Comment: 7 pages, 6 figures, poster presented at the 30th International
Symposium on Lattice Field Theory (Lattice 2012), Cairns, Australia, June
24-29, 201
Nucleon axial form factors from two-flavour Lattice QCD
We present preliminary results on the axial form factor and the
induced pseudoscalar form factor of the nucleon. A systematic
analysis of the excited-state contributions to form factors is performed on the
CLS ensemble `N6' with and lattice spacing . The relevant three-point functions were computed with
source-sink separations ranging from to $t_s \sim \
1.4 \ \text{fm}$. We observe that the form factors suffer from non-trivial
excited-state contributions at the source-sink separations available to us. It
is noted that naive plateau fits underestimate the excited-state contributions
and that the method of summed operator insertions correctly accounts for these
effects.Comment: 7 pages, 12 figures; talk presented at Lattice 2014 -- 32nd
International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia
University New York, N
Nucleon electromagnetic form factors in two-flavour QCD
We present results for the nucleon electromagnetic form factors, including
the momentum transfer dependence and derived quantities (charge radii and
magnetic moment). The analysis is performed using O(a) improved Wilson fermions
in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a
systematic evaluation of the influence of excited states in three-point
correlation functions, which lead to a biased evaluation, if not accounted for
correctly. We argue that the use of summed operator insertions and fit
ans\"atze including excited states allow us to suppress and control this
effect. We employ a novel method to perform joint chiral and continuum
extrapolations, by fitting the form factors directly to the expressions of
covariant baryonic chiral effective field theory. The final results for the
charge radii and magnetic moment from our lattice calculations include, for the
first time, a full error budget. We find that our estimates are compatible with
experimental results within their overall uncertainties.Comment: 22 pages, 10 figures, citations modifie
- …
