1,263 research outputs found

    Shedding Light on the Matter of Abell 781

    Full text link
    The galaxy cluster Abell 781 West has been viewed as a challenge to weak gravitational lensing mass calibration, as Cook and dell'Antonio (2012) found that the weak lensing signal-to-noise in three independent sets of observations was consistently lower than expected from mass models based on X-ray and dynamical measurements. We correct some errors in statistical inference in Cook and dell'Antonio (2012) and show that their own results agree well with the dynamical mass and exhibit at most 2.2--2.9σ\sigma low compared to the X-ray mass, similar to the tension between the dynamical and X-ray masses. Replacing their simple magnitude cut with weights based on source photometric redshifts eliminates the tension between lensing and X-ray masses; in this case the weak lensing mass estimate is actually higher than, but still in agreement with, the dynamical estimate. A comparison of lensing analyses with and without photometric redshifts shows that a 1--2σ\sigma chance alignment of low-redshift sources lowers the signal-to-noise observed by all previous studies which used magnitude cuts rather than photometric redshifts. The fluctuation is unexceptional, but appeared to be highly significant in Cook and dell'Antonio (2012) due to the errors in statistical interpretation.Comment: 7 pages, submitted to MNRA

    Photometric Redshifts and Photometry Errors

    Full text link
    We examine the impact of non-Gaussian photometry errors on photometric redshift performance. We find that they greatly increase the scatter, but this can be mitigated to some extent by incorporating the correct noise model into the photometric redshift estimation process. However, the remaining scatter is still equivalent to that of a much shallower survey with Gaussian photometry errors. We also estimate the impact of non-Gaussian errors on the spectroscopic sample size required to verify the photometric redshift rms scatter to a given precision. Even with Gaussian {\it photometry} errors, photometric redshift errors are sufficiently non-Gaussian to require an order of magnitude larger sample than simple Gaussian statistics would indicate. The requirements increase from this baseline if non-Gaussian photometry errors are included. Again the impact can be mitigated by incorporating the correct noise model, but only to the equivalent of a survey with much larger Gaussian photometry errors. However, these requirements may well be overestimates because they are based on a need to know the rms, which is particularly sensitive to tails. Other parametrizations of the distribution may require smaller samples.Comment: submitted to ApJ

    Cosmic shear results from the deep lens survey - I: Joint constraints on omega_m and sigma_8 with a two-dimensional analysis

    Full text link
    We present a cosmic shear study from the Deep Lens Survey (DLS), a deep BVRz multi-band imaging survey of five 4 sq. degree fields with two National Optical Astronomy Observatory (NOAO) 4-meter telescopes at Kitt Peak and Cerro Tololo. For both telescopes, the change of the point-spread-function (PSF) shape across the focal plane is complicated, and the exposure-to-exposure variation of this position-dependent PSF change is significant. We overcome this challenge by modeling the PSF separately for individual exposures and CCDs with principal component analysis (PCA). We find that stacking these PSFs reproduces the final PSF pattern on the mosaic image with high fidelity, and the method successfully separates PSF-induced systematics from gravitational lensing effects. We calibrate our shears and estimate the errors, utilizing an image simulator, which generates sheared ground-based galaxy images from deep Hubble Space Telescope archival data with a realistic atmospheric turbulence model. For cosmological parameter constraints, we marginalize over shear calibration error, photometric redshift uncertainty, and the Hubble constant. We use cosmology-dependent covariances for the Markov Chain Monte Carlo analysis and find that the role of this varying covariance is critical in our parameter estimation. Our current non-tomographic analysis alone constrains the Omega_M-sigma_8 likelihood contour tightly, providing a joint constraint of Omega_M=0.262+-0.051 and sigma_8=0.868+-0.071. We expect that a future DLS weak-lensing tomographic study will further tighten these constraints because explicit treatment of the redshift dependence of cosmic shear more efficiently breaks the Omega_M-sigma_8 degeneracy. Combining the current results with the Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) likelihood data, we obtain Omega_M=0.278+-0.018 and sigma_8=0.815+-0.020.Comment: Accepted to ApJ. Replaced with the accepted versio

    Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography

    Full text link
    We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing >10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011}, H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for LCDM, we obtain the curvature constraint Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however is not well constrained when WMAP9 is used alone. The dark energy equation of state parameter w is tightly constrained when Baryonic Acoustic Oscillation (BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the final Planck results and also the predictions of a LCDM universe.Comment: Accepted for publication in Ap

    Cross-correlation Tomography: Measuring Dark Energy Evolution with Weak Lensing

    Full text link
    A cross-correlation technique of lensing tomography is presented to measure the evolution of dark energy in the universe. The variation of the weak lensing shear with redshift around massive foreground objects like bright galaxies and clusters depends solely on ratios of angular diameter distances. Use of the massive foreground halos allow us to compare relatively high, linear shear values in the same part of the sky, thus largely eliminating the dominant source of systematic error in cosmological weak lensing measurements. The statistic we use does not rely on knowledge of the foreground mass distribution and is only shot-noise limited. We estimate the constraints that deep lensing surveys with photometric redshifts can provide on the dark energy density Omega, the equation of state parameter w and its redshift derivative w'. The accuracies on w and w' are: sigma(w) ~ 0.02 fsky^{-1/2} and sigma(w') ~ 0.05 fsky^{-1/2}, where fsky is the fraction of sky covered by the survey and sigma(Omega)=0.03 is assumed in the marginalization. Combining our cross-correlation method with standard lensing tomography, which has complementary degeneracies, will allow measurement of the dark energy parameters with significantly better accuracy.Comment: 5 pages, 2 figures, submitted to PRL. Error in shear signal corrected - parameter constraints about a factor of 2 wors

    Tomographic Magnification of Lyman Break Galaxies in The Deep Lens Survey

    Full text link
    Using about 450,000 galaxies in the Deep Lens Survey, we present a detection of the gravitational magnification of z > 4 Lyman Break Galaxies by massive foreground galaxies with 0.4 < z < 1.0, grouped by redshift. The magnification signal is detected at S/N greater than 20, and rigorous checks confirm that it is not contaminated by any galaxy sample overlap in redshift. The inferred galaxy mass profiles are consistent with earlier lensing analyses at lower redshift. We then explore the tomographic lens magnification signal by splitting our foreground galaxy sample into 7 redshift bins. Combining galaxy-magnification cross-correlations and galaxy angular auto-correlations, we develop a bias-independent estimator of the tomographic signal. As a diagnostic of magnification tomography, the measurement of this estimator rejects a flat dark matter dominated Universe at > 7.5{\sigma} with a fixed \sigma_8 and is found to be consistent with the expected redshift-dependence of the WMAP7 {\Lambda}CDM cosmology.Comment: 12 pages, 9 figures, Accepted to MNRA

    Mapping the 3-D Dark Matter potential with weak shear

    Full text link
    We investigate the practical implementation of Taylor's (2002) 3-dimensional gravitational potential reconstruction method using weak gravitational lensing, together with the requisite reconstruction of the lensing potential. This methodology calculates the 3-D gravitational potential given a knowledge of shear estimates and redshifts for a set of galaxies. We analytically estimate the noise expected in the reconstructed gravitational field, taking into account the uncertainties associated with a finite survey, photometric redshift uncertainty, redshift-space distortions, and multiple scattering events. In order to implement this approach for future data analysis, we simulate the lensing distortion fields due to various mass distributions. We create catalogues of galaxies sampling this distortion in three dimensions, with realistic spatial distribution and intrinsic ellipticity for both ground-based and space-based surveys. Using the resulting catalogues of galaxy position and shear, we demonstrate that it is possible to reconstruct the lensing and gravitational potentials with our method. For example, we demonstrate that a typical ground-based shear survey with redshift limit z=1 and photometric redshifts with error Delta z=0.05 is directly able to measure the 3-D gravitational potential for mass concentrations >10^14 M_\odot between 0.1<z<0.5, and can statistically measure the potential at much lower mass limits. The intrinsic ellipticity of objects is found to be a serious source of noise for the gravitational potential, which can be overcome by Wiener filtering or examining the potential statistically over many fields. We examine the use of the 3-D lensing potential to measure mass and position of clusters in 3-D, and to detect clusters behind clusters.Comment: 21 pages, including 24 figures, submitted to MNRA

    On the absence of radio halos in clusters with double relics

    Get PDF
    Pairs of radio relics are believed to form during cluster mergers, and are best observed when the merger occurs in the plane of the sky. Mergers can also produce radio halos, through complex processes likely linked to turbulent re-acceleration of cosmic-ray electrons. However, only some clusters with double relics also show a radio halo. Here, we present a novel method to derive upper limits on the radio halo emission, and analyse archival X-ray Chandra data, as well as galaxy velocity dispersions and lensing data, in order to understand the key parameter that switches on radio halo emission. We place upper limits on the halo power below the P1.4GHzM500P_{\rm 1.4 \, GHz}\, M_{500} correlation for some clusters, confirming that clusters with double relics have different radio properties. Computing X-ray morphological indicators, we find that clusters with double relics are associated with the most disturbed clusters. We also investigate the role of different mass-ratios and time-since-merger. Data do not indicate that the merger mass ratio has an impact on the presence or absence of radio halos (the null hypothesis that the clusters belong to the same group cannot be rejected). However, the data suggests that the absence of radio halos could be associated with early and late mergers, but the sample is too small to perform a statistical test. Our study is limited by the small number of clusters with double relics. Future surveys with LOFAR, ASKAP, MeerKat and SKA will provide larger samples to better address this issue.Comment: 12 pages, 7 figures, MNRAS accepte
    corecore