446 research outputs found

    Lower-cost tungsten-rhenium alloys

    Get PDF
    Tungsten-rhenium alloys with a substantially more dilute rhenium content have ductilities and other mechanical properties which compare favorably with the tungsten-rhenium alloys having much higher concentrations of the costly rhenium

    High-strength tungsten alloy with improved ductility

    Get PDF
    Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet

    Effects of Grain Size on the Tensile and Creep Properties of Arc-melted and Electron-beam-melted Tungsten at 2250 Deg to 4140 Deg f

    Get PDF
    Effects of grain size on tensile and creep properties of arc melted and electron beam melted tungste

    Aortic stent-grafting: successful introduction into the combined procedure for coronary artery bypass grafting and aortic aneurysm repair

    Get PDF
    Objectives: Coronary artery bypass grafting (CABG) and combined stent-grafting (SG) were evaluated to reduce morbidity and mortality of patients with descending or infrarenal aortic aneurysm. Methods: CABG and SG (thoracic n=6, infrarenal n=36) were performed during the same hospitalization in 42 patients (mean age of 73±14 years). In 29 patients (mean Euroscore: 9), SG was performed under local anesthesia 9±3 days after coronary surgery (simultaneous) and in 13 patients (mean Euroscore: 7) during the same anesthesia (synchronous). In the latter group, 11 out of 13 patients underwent off-pump CABG. All aneurysms were treated by implantation of commercially available self-expanding grafts. Results: CABG was successful in all, but one patient with left internal mammary artery hypoperfusion syndrome, requiring an additional distal saphenous graft to the left anterior descending coronary artery. SG was uneventful in 98% (41/42 patients). Postoperative computerized tomography showed incomplete sealing in seven patients (17%), but only the two attachment endoleaks had to be treated by one proximal and one distal SG extension. Overall hospital stay for the synchronous repair was 12.5±6 days and that of the simultaneous group 17.5±7 days. Thirty-day mortality was 5% (2/42) as one patient of the simultaneous group experienced a lethal cerebral embolism during SG and one patient of the synchronous group developed an untreatable infection. In the follow-up of 4 years, there were two vascular reinterventions but no additional procedure-related morbidity or mortality. Conclusions: This experience shows that combined CABG and SG of thoracic or infrarenal aortic aneurysm is a safe and less-invasive alternative to the open graft repair, especially in the older patients or patients with severe comorbiditie

    Inclusive charged hadron elliptic flow in Au + Au collisions at sNN\sqrt{s_{NN}} = 7.7 - 39 GeV

    Get PDF
    A systematic study is presented for centrality, transverse momentum (pTp_T) and pseudorapidity (η\eta) dependence of the inclusive charged hadron elliptic flow (v2v_2) at midrapidity(η<1.0|\eta| < 1.0) in Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants (v24v_2{4}), are presented in order to investigate non-flow correlations and v2v_2 fluctuations. We observe that the difference between v22v_2{2} and v24v_2{4} is smaller at the lower collision energies. Values of v2v_2, scaled by the initial coordinate space eccentricity, v2/εv_{2}/\varepsilon, as a function of pTp_T are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (sNN\sqrt{s_{NN}} = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV). The v2(pT)v_2(p_T) values for fixed pTp_T rise with increasing collision energy within the pTp_T range studied (<2GeV/c< 2 {\rm GeV}/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v2(pT)v_{2}(p_{T}). We also compare the v2v_2 results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR

    Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

    Get PDF
    We report new STAR measurements of mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S}, Ξ\Xi^{-}, Ξˉ+\bar{\Xi}^{+}, Ω\Omega^{-}, Ωˉ+\bar{\Omega}^{+} particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S} particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions

    Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

    Get PDF
    We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure

    Measurements of D0D^{0} and DD^{*} Production in pp + pp Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We report measurements of charmed-hadron (D0D^{0}, DD^{*}) production cross sections at mid-rapidity in pp + pp collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays D0Kπ+D^{0}\rightarrow K^{-}\pi^{+}, D+D0π+Kπ+π+D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+} and their charge conjugates, covering the pTp_T range of 0.6-2.0 GeV/cc and 2.0-6.0 GeV/cc for D0D^{0} and D+D^{*+}, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is dσ/dyy=0ccˉd\sigma/dy|_{y=0}^{c\bar{c}} = 170 ±\pm 45 (stat.) 59+38^{+38}_{-59} (sys.) μ\mub. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.

    Observation of the antimatter helium-4 nucleus

    Get PDF
    High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4Heˉ^4\bar{He}), also known as the anti-{\alpha} (αˉ\bar{\alpha}), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 4Heˉ^4\bar{He} counts were detected at the STAR experiment at RHIC in 109^9 recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.Comment: 19 pages, 4 figures. Submitted to Nature. Under media embarg
    corecore