984 research outputs found
Coplanar back contacts for thin silicon solar cells
The type of coplanar back contact solar cell described was constructed with interdigitated n(+) and p(+) type regions on the back of the cell, such that both contacts are made on the back with no metallization grid on the front. This cell construction has several potential advantages over conventional cells for space use namely, convenience of interconnects, lower operating temperatures and higher efficiency due to the elimination of grid shadowing. However, the processing is more complex, and the cell is inherently more radiation sensitive. The latter problem can be reduced substantially by making the cells very thin (approximately 50 micrometers). Two types of interdigitated back contact cells are possible, the types being dependent on the character of the front surface. The front surface field cell has a front surface region that is of the same conductivity type as the bulk but is more heavily doped. This creates an electric field at the surface which repels the minority carriers. The tandem junction cell has a front surface region of a conductivity type that is opposite to that of the bulk. The junction thus created floats to open circuit voltage on illumination and injects carriers into the bulk which then can be collected at the rear junction. For space use, the front surface field cell is potentially more radiation resistant than the tandem junction cell because the flow of minority carriers (electrons) into the bulk will be less sensitive to the production of recombination centers, particularly in the space charge region at the front surface
Recommended from our members
Linking hypotheses underlying Class A and Class B methods
Class A psychophysical observations are based on the linking hypothesis that perceptually distinguishable stimuli must correspond to different brain events. Class B observations are related to the appearance of stimuli not their discriminability. There is no clear linking hypothesis underlying Class B observations, but they are necessary for studying the effects of context on appearance, including a large class of phenomena known as “illusions.” Class B observations are necessarily measures of observer bias (Fechner’s “constant error”) as opposed to Class A measures of sensitivity (Fechner’s “variable error”). It is therefore important that Class B observations distinguish between response biases, decisional biases, and perceptual biases. This review argues that the commonly used method of single stimuli fails to do this, and that multiple-alternative forced choice (mAFC) methods can do a better job, particularly if combined with a roving pedestal
Recommended from our members
Attention and the motion after effect
We measured the effects of attentional distraction on the time course and asymptote of motion adaptation strength, using visual search performance (percent correct and reaction time). In the first two experiments, participantsadapted to a spatial array of moving Gaborpatches, either all vertically oriented (Experiment 1) or randomly oriented (Experiment 2). On each trial the adaptingarray was followed by a test array in which all of the test patchesexcept one were identical in orientation and movement direction to their retinotopically corresponding adaptors, but thetarget moved in the opposite direction to its adaptor. Participantswere required to identify the location of the changed targetwith a mouse click. The ability to do so increased with the number of adapting trials. Neither search speed nor accuracy was affected by an attentionallydemanding conjunction task at the fixation point during adaptation, suggesting low-level (pre-attentive) sites in the visual pathway for the adaptation. In Experiment 3 the same participants were required to identify the one element in the test array that was slowly moving. Reaction times in this case were elevated following adaptation, but once again there was nosignificant effect of the distracting task upon performance.In Experiment 4 participants were required to make eye movements, so that retinotopically corresponding adaptors could be distinguished from spatiotopically corresponding adaptors.Performance in Experiments 1 and 2 correlated positively with reaction times in Experiment 3, suggesting a general trait for adaptation strength
A compact statistical model of the song syntax in Bengalese finch
Songs of many songbird species consist of variable sequences of a finite
number of syllables. A common approach for characterizing the syntax of these
complex syllable sequences is to use transition probabilities between the
syllables. This is equivalent to the Markov model, in which each syllable is
associated with one state, and the transition probabilities between the states
do not depend on the state transition history. Here we analyze the song syntax
in a Bengalese finch. We show that the Markov model fails to capture the
statistical properties of the syllable sequences. Instead, a state transition
model that accurately describes the statistics of the syllable sequences
includes adaptation of the self-transition probabilities when states are
repeatedly revisited, and allows associations of more than one state to the
same syllable. Such a model does not increase the model complexity
significantly. Mathematically, the model is a partially observable Markov model
with adaptation (POMMA). The success of the POMMA supports the branching chain
network hypothesis of how syntax is controlled within the premotor song nucleus
HVC, and suggests that adaptation and many-to-one mapping from neural
substrates to syllables are important features of the neural control of complex
song syntax
Enzymatic synthesis of chiral amino-alcohols by coupling transketolase and transaminase-catalyzed reactions in a cascading continuous-flow microreactor system
Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino-alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)-2-amino-1,3,4-butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non-chiral starting materials, by coupling a transketolase- and a transaminase-catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor-based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous-flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase-catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml-1 . Following optimization of the transaminase-catalyzed reaction, a volumetric activity of 10.8 U ml-1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous-flow microreactors can be applied for the design and optimization of biocatalytic processes
Complex sequencing rules of birdsong can be explained by simple hidden Markov processes
Complex sequencing rules observed in birdsongs provide an opportunity to
investigate the neural mechanism for generating complex sequential behaviors.
To relate the findings from studying birdsongs to other sequential behaviors,
it is crucial to characterize the statistical properties of the sequencing
rules in birdsongs. However, the properties of the sequencing rules in
birdsongs have not yet been fully addressed. In this study, we investigate the
statistical propertiesof the complex birdsong of the Bengalese finch (Lonchura
striata var. domestica). Based on manual-annotated syllable sequences, we first
show that there are significant higher-order context dependencies in Bengalese
finch songs, that is, which syllable appears next depends on more than one
previous syllable. This property is shared with other complex sequential
behaviors. We then analyze acoustic features of the song and show that
higher-order context dependencies can be explained using first-order hidden
state transition dynamics with redundant hidden states. This model corresponds
to hidden Markov models (HMMs), well known statistical models with a large
range of application for time series modeling. The song annotation with these
models with first-order hidden state dynamics agreed well with manual
annotation, the score was comparable to that of a second-order HMM, and
surpassed the zeroth-order model (the Gaussian mixture model (GMM)), which does
not use context information. Our results imply that the hierarchical
representation with hidden state dynamics may underlie the neural
implementation for generating complex sequences with higher-order dependencies
The future of metabolomics in ELIXIR.
Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases
Sigmund Exner's (1887) einige beobachtungen über bewegungsnachbilder (some observations on movement aftereffects):an illustrated translation with commentary
In his original contribution, Exner’s principal concern was a comparison between the properties of different aftereffects, and particularly to determine whether aftereffects of motion were similar to those of color and whether they could be encompassed within a unified physiological framework. Despite the fact that he was unable to answer his main question, there are some excellent—so far unknown—contributions in Exner’s paper. For example, he describes observations that can be related to binocular interaction, not only in motion aftereffects but also in rivalry. To the best of our knowledge, Exner provides the first description of binocular rivalry induced by differently moving patterns in each eye, for motion as well as for their aftereffects. Moreover, apart from several known, but beautifully addressed, phenomena he makes a clear distinction between motion in depth based on stimulus properties and motion in depth based on the interpretation of motion. That is, the experience of movement, as distinct from the perception of movement. The experience, unlike the perception, did not result in a motion aftereffect in depth
(Biphenyl-2-yl)bromidobis(2-methyltetrahydrofuran-κO)magnesium(II)
In the title Grignard reagent, [MgBr(C12H9)(C5H10O)2], the Mg centre adopts a distorted tetrahedral MgCO2Br arrangement. The dihedral angle between the two aromatic rings of the biphenyl residue is 44.00 (14)°. Each molecule incorporates one R- and one S-configured 2-methyltetrahydrofuran molecule
- …
