525 research outputs found
Current-Carrying Ground States in Mesoscopic and Macroscopic Systems
We extend a theorem of Bloch, which concerns the net orbital current carried
by an interacting electron system in equilibrium, to include mesoscopic
effects. We obtain a rigorous upper bound to the allowed ground-state current
in a ring or disc, for an interacting electron system in the presence of static
but otherwise arbitrary electric and magnetic fields. We also investigate the
effects of spin-orbit and current-current interactions on the upper bound.
Current-current interactions, caused by the magnetic field produced at a point
r by a moving electron at r, are found to reduce the upper bound by an amount
that is determined by the self-inductance of the system. A solvable model of an
electron system that includes current-current interactions is shown to realize
our upper bound, and the upper bound is compared with measurements of the
persistent current in a single ring.Comment: 7 pager, Revtex, 1 figure available from [email protected]
Manipulating nonequilibrium magnetism through superconductors
Electrostatic control of the magnetization of a normal mesoscopic conductor
is analyzed in a hybrid superconductor-normal-superconductor system. This
effect stems from the interplay between the non-equilibrium condition in the
normal region and the Zeeman splitting of the quasiparticle density of states
of the superconductor subjected to a static in-plane magnetic field. Unexpected
spin-dependent effects such as magnetization suppression, diamagnetic-like
response of the susceptibility as well as spin-polarized current generation are
the most remarkable features presented. The impact of scattering events is
evaluated and let us show that this effect is compatible with realistic
material properties and fabrication techniques.Comment: 5 pages, 4 figure
Comment on "Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi"
In a recent paper (Phys. Rev. {\bf B 67}, 094502 (2003)) Mao et al.
investigated the bias-dependent conductance of mechanical junctions between
superconducting MgCNi and a sharp W tip. They interpreted their results in
terms of 'single-particle tunneling'. We show it is more likely that current
transport through those junctions is determined by thermal effects due to the
huge normal-state resistivity of MgCNi. Therefore no conclusion can be
drawn about the possible unconventional pairing or strong-coupling
superconductivity in MgCNi.Comment: 2 pages, 1 Fig. Comment on Z. Q. Mao et al. (Phys. Rev. {\bf B 67},
094502 (2003)
Recommended from our members
Biokinetics and effects of barium sulfate nanoparticles
Background: Nanoparticulate barium sulfate has potential novel applications and wide use in the polymer and paint industries. A short-term inhalation study on barium sulfate nanoparticles (BaSO4 NPs) was previously published [Part Fibre Toxicol 11:16, 2014]. We performed comprehensive biokinetic studies of 131BaSO4 NPs administered via different routes and of acute and subchronic pulmonary responses to instilled or inhaled BaSO4 in rats. Methods: We compared the tissue distribution of 131Ba over 28 days after intratracheal (IT) instillation, and over 7 days after gavage and intravenous (IV) injection of 131BaSO4. Rats were exposed to 50 mg/m3 BaSO4 aerosol for 4 or 13 weeks (6 h/day, 5 consecutive days/week), and then gross and histopathologic, blood and bronchoalveolar lavage (BAL) fluid analyses were performed. BAL fluid from instilled rats was also analyzed. Results: Inhaled BaSO4 NPs showed no toxicity after 4-week exposure, but a slight neutrophil increase in BAL after 13-week exposure was observed. Lung burden of inhaled BaSO4 NPs after 4-week exposure (0.84 ± 0.18 mg/lung) decreased by 95% over 34 days. Instilled BaSO4 NPs caused dose-dependent inflammatory responses in the lungs. Instilled BaSO4 NPs (0.28 mg/lung) was cleared with a half-life of ≈ 9.6 days. Translocated 131Ba from the lungs was predominantly found in the bone (29%). Only 0.15% of gavaged dose was detected in all organs at 7 days. IV-injected 131BaSO4 NPs were predominantly localized in the liver, spleen, lungs and bone at 2 hours, but redistributed from the liver to bone over time. Fecal excretion was the dominant elimination pathway for all three routes of exposure. Conclusions: Pulmonary exposure to instilled BaSO4 NPs caused dose-dependent lung injury and inflammation. Four-week and 13-week inhalation exposures to a high concentration (50 mg/m3) of BaSO4 NPs elicited minimal pulmonary response and no systemic effects. Instilled and inhaled BaSO4 NPs were cleared quickly yet resulted in higher tissue retention than when ingested. Particle dissolution is a likely mechanism. Injected BaSO4 NPs localized in the reticuloendothelial organs and redistributed to the bone over time. BaSO4 NP exhibited lower toxicity and biopersistence in the lungs compared to other poorly soluble NPs such as CeO2 and TiO2. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0055-3) contains supplementary material, which is available to authorized users
Thermal expansion, heat capacity and magnetostriction of RAl (R = Tm, Yb, Lu) single crystals
We present thermal expansion and longitudinal magnetostriction data for cubic
RAl3 (R = Tm, Yb, Lu) single crystals. The thermal expansion coefficient for
YbAl3 is consistent with an intermediate valence of the Yb ion, whereas the
data for TmAl3 show crystal electric field contributions and have strong
magnetic field dependencies. de Haas-van Alphen-like oscillations were observed
in the magnetostriction data of YbAl3 and LuAl3, several new extreme orbits
were measured and their effective masses were estimated. Zero and 140 kOe
specific heat data taken on both LuAl3 and TmAl3 for T < 200 K allow for the
determination of a CEF splitting scheme for TmAl3
Superconductivity in the SU(N) Anderson Lattice at U=\infty
We present a mean-field study of superconductivity in a generalized N-channel
cubic Anderson lattice at U=\infty taking into account the effect of a
nearest-neighbor attraction J. The condition U=\infty is implemented within the
slave-boson formalism considering the slave bosons to be condensed. We consider
the -level occupancy ranging from the mixed valence regime to the Kondo
limit and study the dependence of the critical temperature on the various model
parameters for each of three possible Cooper pairing symmetries (extended s,
d-wave and p-wave pairing) and find interesting crossovers. It is found that
the d- and p- wave order parameters have, in general, very similar critical
temperatures. The extended s-wave pairing seems to be relatively more stable
for electronic densities per channel close to one and for large values of the
superconducting interaction J.Comment: Seven Figures; one appendix. Accepted for publication in Phys. Rev.
Possibility of long-range order in clean mesoscopic cylinders
A microscopic Hamiltonian of the magnetostatic interaction is discussed. This
long-range interaction can play an important role in mesoscopic systems leading
to an ordered ground state.
The self-consistent mean field approximation of the magnetostatic interaction
is performed to give an effective Hamiltonian from which the spontaneous,
self-sustaining currents can be obtained.
To go beyond the mean field approximation the mean square fluctuation of the
total momentum is calculated and its influence on self-sustaining currents in
mesoscopic cylinders with quasi-1D and quasi-2D conduction is considered. Then,
by the use of the microscopic Hamiltonian of the magnetostatic interaction for
a set of stacked rings, the problem of long-range order is discussed. The
temperature below which the system is in an ordered state is
determined.Comment: 14 pages, REVTeX, 5 figures, in print in Phys. Rev.
On the possibility of spontaneous currents in mesoscopie systems
It is shown that a mesoscopic metallic system can exhibit a phase transition
to a low temperature state with a spontaneous orbital current if it is
sufficiently free of elastic defect scattering. The interaction among the electrons,
which is the reason of the phase transition, is of the magnetic origin
and it leads to an ordered state of the orbital magnetic moments
NM-Series of Representative Manufactured Nanomaterials - Zinc Oxide NM-110, NM-111, NM-112, NM-113: Characterisation and Test Item Preparation
The European Commission Joint Research Centre (JRC) provides scientific support to European Union policy regarding nanotechnology. Over the last three years, the JRC, in collaboration with international public and private partners, focused part of its work on establishing and applying a priority list (NM-Series) of Representative Manufactured Nanomaterials (RMNs) in support of one of the most comprehensive nanomaterial research programmes that is currently being carried out: the Organisation for Economic Co-operation and Development’s (OECD) Working Party on Manufactured Nanomaterials (WPMN) Sponsorship Programme; this collaborative programme ultimately enables the development and collection of data on characterisation, measurement, toxicological and eco-toxicological testing, as well as risk assessment and safety evaluation of nanomaterials (NMs). It is of utmost timely importance to make representative nanomaterials available to the international scientific community, in order to enable innovation and development of safe materials and products.
The present report describes the characterisation of NM-110, NM-111, NM-112, and NM-113, RMN Zinc Oxide substances, originating from defined batches of commercially manufactured material, respectively. The NM-Series materials were subsampled in collaboration with Fraunhofer Institute for Molecular and Applied Ecology (Fh IME), in order to be made available for measurement and testing for hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physical-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The RMNs are studied by a number of international laboratories.
The properties of the Zinc Oxide RMNs NM-110, NM-111, NM-112, and NM-113 studied and described in this report demonstrate their relevance for use in measurement and testing studies of nanomaterials. The studies were performed in close collaboration between the PROSPECT consortium partners, the JRC, the Fraunhofer Institute for Molecular and Applied Ecology (Fh-IME), BASF AG Ludwigshafen, LGC standards, the National Physical Laboratory (NPL) as national metrology institute of the United Kingdom, the National Research Centre for the Working Environment, Denmark, CSIRO and the National Measurement Institute of Australia.JRC.D - Institute for Reference Materials and Measurements (Geel
Valence Fluctuations Revealed by Magnetic Field Scan: Comparison with Experiments in YbXCu_4 (X=In, Ag, Cd) and CeYIn_5 (Y=Ir, Rh)
The mechanism of how critical end points of the first-order valence
transitions (FOVT) are controlled by a magnetic field is discussed. We
demonstrate that the critical temperature is suppressed to be a quantum
critical point (QCP) by a magnetic field. This results explain the field
dependence of the isostructural FOVT observed in Ce metal and YbInCu_4.
Magnetic field scan can lead to reenter in a critical valence fluctuation
region. Even in the intermediate-valence materials, the QCP is induced by
applying a magnetic field, at which the magnetic susceptibility also diverges.
The driving force of the field-induced QCP is shown to be a cooperative
phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct
energy scale from the Kondo temperature. The key concept is that the closeness
to the QCP of the FOVT is capital in understanding Ce- and Yb-based heavy
fermions. It explains the peculiar magnetic and transport responses in CeYIn_5
(Y=Ir, Rh) and metamagnetic transition in YbXCu_4 for X=In as well as the sharp
contrast between X=Ag and Cd.Comment: 14 pages, 9 figures, OPEN SELECT in J. Phys. Soc. Jp
- …
