219 research outputs found
Duality in matrix lattice Boltzmann models
The notion of duality between the hydrodynamic and kinetic (ghost) variables
of lattice kinetic formulations of the Boltzmann equation is introduced. It is
suggested that this notion can serve as a guideline in the design of matrix
versions of the lattice Boltzmann equation in a physically transparent and
computationally efficient way.Comment: 12 pages, 3 figure
Volumetric formulation of lattice Boltzmann models with energy conservation
We analyze a volumetric formulation of lattice Boltzmann for compressible
thermal fluid flows. The velocity set is chosen with the desired accuracy,
based on the Gauss-Hermite quadrature procedure, and tested against controlled
problems in bounded and unbounded fluids. The method allows the simulation of
thermohydrodyamical problems without the need to preserve the exact
space-filling nature of the velocity set, but still ensuring the exact
conservation laws for density, momentum and energy. Issues related to boundary
condition problems and improvements based on grid refinement are also
investigated.Comment: 8 figure
Herschel-Bulkley rheology from lattice kinetic theory of soft-glassy materials
We provide a clear evidence that a two species mesoscopic Lattice Boltzmann
(LB) model with competing short-range attractive and mid-range repulsive
interactions supports emergent Herschel-Bulkley (HB) rheology, i.e. a power-law
dependence of the shear-stress as a function of the strain rate, beyond a given
yield-stress threshold. This kinetic formulation supports a seamless transition
from flowing to non-flowing behaviour, through a smooth tuning of the
parameters governing the mesoscopic interactions between the two species. The
present model may become a valuable computational tool for the investigation of
the rheology of soft-glassy materials on scales of experimental interest.Comment: 5 figure
Generalized Lattice Boltzmann Method with multi-range pseudo-potential
The physical behaviour of a class of mesoscopic models for multiphase flows
is analyzed in details near interfaces. In particular, an extended
pseudo-potential method is developed, which permits to tune the equation of
state and surface tension independently of each other. The spurious velocity
contributions of this extended model are shown to vanish in the limit of high
grid refinement and/or high order isotropy. Higher order schemes to implement
self-consistent forcings are rigorously computed for 2d and 3d models. The
extended scenario developed in this work clarifies the theoretical foundations
of the Shan-Chen methodology for the lattice Boltzmann method and enhances its
applicability and flexibility to the simulation of multiphase flows to density
ratios up to O(100)
A lattice mesoscopic model of dynamically heterogeneous fluids
We introduce a mesoscopic three-dimensional Lattice Boltzmann Model which
attempts to mimick the physical features associated with cage effects in
dynamically heterogeneous fluids. To this purpose, we extend the standard
Lattice Boltzmann dynamics with self-consistent constraints based on the
non-local density of the surrounding fluid. The resulting dynamics exhibits
typical features of dynamic heterogeneous fluids, such as non-Gaussian density
distributions and long-time relaxation. Due to its intrinsically parallel
dynamics, and absence of statistical noise, the method is expected to compute
significantly faster than molecular dynamics, Monte Carlo and lattice glass
models.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Lattice Boltzmann models for non-ideal fluids with arrested phase-separation
The effects of mid-range repulsion in Lattice Boltzmann models on the
coalescence/breakup behaviour of single-component, non-ideal fluids are
investigated. It is found that mid-range repulsive interactions allow the
formation of spray-like, multi-droplet configurations, with droplet size
directly related to the strength of the repulsive interaction. The simulations
show that just a tiny ten-percent of mid-range repulsive pseudo-energy can
boost the surface/volume ratio of the phase- separated fluid by nearly two
orders of magnitude. Drawing upon a formal analogy with magnetic Ising systems,
a pseudo-potential energy is defined, which is found to behave like a
quasi-conserved quantity for most of the time-evolution. This offers a useful
quantitative indicator of the stability of the various configurations, thus
helping the task of their interpretation and classification. The present
approach appears to be a promising tool for the computational modelling of
complex flow phenomena, such as atomization, spray formation and
micro-emulsions, break-up phenomena and possibly glassy-like systems as well.Comment: 12 pages, 9 figure
Numerical simulations of compressible Rayleigh-Taylor turbulence in stratified fluids
We present results from numerical simulations of Rayleigh-Taylor turbulence,
performed using a recently proposed lattice Boltzmann method able to describe
consistently a thermal compressible flow subject to an external forcing. The
method allowed us to study the system both in the nearly-Boussinesq and
strongly compressible regimes. Moreover, we show that when the stratification
is important, the presence of the adiabatic gradient causes the arrest of the
mixing process.Comment: 15 pages, 11 figures. Proceedings of II Conference on Turbulent
Mixing and Beyond (TMB-2009
Impalement transitions in droplets impacting microstructured superhydrophobic surfaces
Liquid droplets impacting a superhydrophobic surface decorated with
micro-scale posts often bounce off the surface. However, by decreasing the
impact velocity droplets may land on the surface in a fakir state, and by
increasing it posts may impale droplets that are then stuck on the surface. We
use a two-phase lattice-Boltzmann model to simulate droplet impact on
superhydrophobic surfaces, and show that it may result in a fakir state also
for reasonable high impact velocities. This happens more easily if the surface
is made more hydrophobic or the post height is increased, thereby making the
impaled state energetically less favourable.Comment: 8 pages, 4 figures, to appear in Europhysics Letter
Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations
- …
