5,289 research outputs found
Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold
The excitation spectrum around the pump-only stationary state of a polariton
optical parametric oscillator (OPO) in semiconductor microcavities is
investigated by time-resolved photoluminescence. The response to a weak pulsed
perturbation in the vicinity of the idler mode is directly related to the
lifetime of the elementary excitations. A dramatic increase of the lifetime is
observed for a pump intensity approaching and exceeding the OPO threshold. The
observations can be explained in terms of a critical slowing down of the
dynamics upon approaching the threshold and the following onset of the soft
Goldstone mode
Cavity-enhanced photoionization of an ultracold rubidium beam for application in focused ion beams
A two-step photoionization strategy of an ultracold rubidium beam for
application in a focused ion beam instrument is analyzed and implemented. In
this strategy the atomic beam is partly selected with an aperture after which
the transmitted atoms are ionized in the overlap of a tightly cylindrically
focused excitation laser beam and an ionization laser beam whose power is
enhanced in a build-up cavity. The advantage of this strategy, as compared to
without the use of a build-up cavity, is that higher ionization degrees can be
reached at higher currents. Optical Bloch equations including the
photoionization process are used to calculate what ionization degree and
ionization position distribution can be reached. Furthermore, the ionization
strategy is tested on an ultracold beam of Rb atoms. The beam current is
measured as a function of the excitation and ionization laser beam intensity
and the selection aperture size. Although details are different, the global
trends of the measurements agree well with the calculation. With a selection
aperture diameter of 52 m, a current of pA is
measured, which according to calculations is 63% of the current equivalent of
the transmitted atomic flux. Taking into account the ionization degree the ion
beam peak reduced brightness is estimated at A/(msreV).Comment: 13 pages, 9 figure
The effect of a multispecies probiotic on the composition of the faecal microbiota and bowel habits in chronic obstructive pulmonary disease patients treated with antibiotics
Short-term antibiotic treatment profoundly affects the intestinal microbiota, which may lead to sustained changes in microbiota composition. Probiotics may restore such a disturbance. The objective of the present study was to investigate the effect of a multispecies probiotic on the faecal microbiota during and after antibiotic intake in patients with a history of frequent antibiotic use. In this randomised, placebo-controlled, double-blind study, thirty chronic obstructive pulmonary disease (COPD) patients treated with antibiotics for a respiratory tract infection received 5 g of a multispecies probiotic or placebo twice daily for 2 weeks. Faecal samples were collected at 0, 7, 14 and 63 d. Changes in the composition of the dominant faecal microbiota were determined by PCR-denaturing gradient gel electrophoresis (DGGE). Changes in bacterial subgroups were determined by quantitative PCR and culture. Bowel movements were scored daily according to the Bristol stool form scale. During and after antibiotic treatment, DGGE-based similarity indices (SI) were high ( >/= 84 %) and band richness was relatively low, both remaining stable over time. No difference in SI was observed between patients with and without diarrhoea-like bowel movements. The multispecies probiotic had a modest effect on the bacterial subgroups. Nevertheless, it affected neither the composition of the dominant faecal microbiota nor the occurrence of diarrhoea-like bowel movements. The dominant faecal microbiota was not affected by antibiotics in this COPD population, suggesting an existing imbalance of the microbiota, which may also have contributed to the lack of effect by probiotic intak
Many-body physics of a quantum fluid of exciton-polaritons in a semiconductor microcavity
Some recent results concerning nonlinear optics in semiconductor
microcavities are reviewed from the point of view of the many-body physics of
an interacting photon gas. Analogies with systems of cold atoms at thermal
equilibrium are drawn, and the peculiar behaviours due to the non-equilibrium
regime pointed out. The richness of the predicted behaviours shows the
potentialities of optical systems for the study of the physics of quantum
fluids.Comment: Proceedings of QFS2006 conference to appear on JLT
Lateral versus interdigitated diode design for 10 Gb/s low-voltage low-loss silicon ring modulators
Design and experimental validation of a compact collimated Knudsen source
In this paper we discuss the design and performance of a collimated Knudsen
source which has the benefit of a simple design over recirculating sources.
Measurements of the flux, transverse velocity distribution and brightness at
different temperatures were conducted to evaluate the performance. The scaling
of the flux and brightness with the source temperature follow the theoretical
predictions. The transverse velocity distribution in the transparent operation
regime also agrees with the simulated data. The source was found able to
produce a flux of s at a temperature of 433 K. Furthermore the
transverse reduced brightness of an ion beam with equal properties as the
atomic beam reads A/(m sr eV) which is sufficient for
our goal: the creation of an ultra-cold ion beam by ionization of a
laser-cooled and compressed atomic rubidium beam
- …
