8,004 research outputs found

    A New Algorithm For Difference Image Analysis

    Full text link
    In the context of difference image analysis (DIA), we present a new method for determining the convolution kernel matching a pair of images of the same field. Unlike the standard DIA technique which involves modelling the kernel as a linear combination of basis functions, we consider the kernel as a discrete pixel array and solve for the kernel pixel values directly using linear least-squares. The removal of basis functions from the kernel model is advantageous for a number of compelling reasons. Firstly, it removes the need for the user to specify such functions, which makes for a much simpler user application and avoids the risk of an inappropriate choice. Secondly, basis functions are constructed around the origin of the kernel coordinate system, which requires that the two images are perfectly aligned for an optimal result. The pixel kernel model is sufficiently flexible to correct for image misalignments, and in the case of a simple translation between images, image resampling becomes unnecessary. Our new algorithm can be extended to spatially varying kernels by solving for individual pixel kernels in a grid of image sub-regions and interpolating the solutions to obtain the kernel at any one pixel.Comment: MNRAS Letters Accepte

    Disc galaxies with multiple triaxial structures. II. JHK surface photometry and numerical simulations

    Full text link
    We present detailed JHK surface photometry with ellipse fits of 13 galaxies selected from previous optical observations as likely candidates for having a secondary bar or a triaxial bulge within the primary bar. We have found 7 double-barred galaxies, 3 double-barred galaxies with an additional intermediate structure with twisted isophotes, and 3 galaxies with a bar and central twisted isophotes. A global analysis of the structural parameter characteristics in the I- and K-bands is presented. Various numerical models of galaxies with bars within bars are also analysed using the ellipse fitting technique and compared to the observations. A thorough review of the possible hypotheses able to explain this phenomenon is given with emphasis on the most likely ones.Comment: 12 pages, AATEX. Accepted for publication in A&A. Large color postscript figures omitted (Figs. 1), figures 2-9 included; gzip'ed postscript files of the paper and Figs. 1 available via anonymous ftp at ftp://obsftp.unige.ch/pub/fri/aasjhk/ , files fri_aasjhk.ps.gz and ngc*.ps.g

    SuperLupus: A Deep, Long Duration Transit Survey

    Full text link
    SuperLupus is a deep transit survey monitoring a Galactic Plane field in the Southern hemisphere. The project is building on the successful Lupus Survey, and will double the number of images of the field from 1700 to 3400, making it one of the longest duration deep transit surveys. The immediate motivation for this expansion is to search for longer period transiting planets (5-8 days) and smaller radii planets. It will also provide near complete recovery for the shorter period planets (1-3 days). In March, April, and May 2008 we obtained the new images and work is currently in progress reducing these new data.Comment: 3 pages, 2 figures, to appear in the Proceedings of IAU Symposium 253, 2008: Transiting Planet

    TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes

    Full text link
    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.Comment: Presentation at SPIE 2004, Glasgow, Scotland (UK

    Lupus-TR-3b: A Low-Mass Transiting Hot Jupiter in the Galactic Plane?

    Full text link
    We present a strong case for a transiting Hot Jupiter planet identified during a single-field transit survey towards the Lupus Galactic plane. The object, Lupus-TR-3b, transits a V=17.4 K1V host star every 3.91405d. Spectroscopy and stellar colors indicate a host star with effective temperature 5000 +/- 150K, with a stellar mass and radius of 0.87 +/- 0.04M_sun and 0.82 +/- 0.05R_sun, respectively. Limb-darkened transit fitting yields a companion radius of 0.89 +/- 0.07R_J and an orbital inclination of 88.3 +1.3/-0.8 deg. Magellan 6.5m MIKE radial velocity measurements reveal a 2.4 sigma K=114 +/- 25m/s sinusoidal variation in phase with the transit ephemeris. The resulting mass is 0.81 +/- 0.18M_J and density 1.4 +/- 0.4g/cm^3. Y-band PANIC image deconvolution reveal a V>=21 red neighbor 0.4'' away which, although highly unlikely, we cannot conclusively rule out as a blended binary with current data. However, blend simulations show that only the most unusual binary system can reproduce our observations. This object is very likely a planet, detected from a highly efficient observational strategy. Lupus-TR-3b constitutes the faintest ground-based detection to date, and one of the lowest mass Hot Jupiters known.Comment: 4 pages, 4 figures, accepted for publication in ApJ

    Effect of Binary Source Companions on the Microlensing Optical Depth Determination toward the Galactic Bulge Field

    Full text link
    Currently, gravitational microlensing survey experiments toward the Galactic bulge field utilize two different methods of minimizing blending effect for the accurate determination of the optical depth \tau. One is measuring \tau based on clump giant (CG) source stars and the other is using `Difference Image Analysis (DIA)' photometry to measure the unblended source flux variation. Despite the expectation that the two estimates should be the same assuming that blending is properly considered, the estimates based on CG stars systematically fall below the DIA results based on all events with source stars down to the detection limit. Prompted by the gap, we investigate the previously unconsidered effect of companion-associated events on τ\tau determination. Although the image of a companion is blended with that of its primary star and thus not resolved, the event associated with the companion can be detected if the companion flux is highly magnified. Therefore, companions work effectively as source stars to microlensing and thus neglect of them in the source star count could result in wrong \tau estimation. By carrying out simulations based on the assumption that companions follow the same luminosity function of primary stars, we estimate that the contribution of the companion-associated events to the total event rate is ~5f_{bi}% for current surveys and can reach up to ~6f_{bi}% for future surveys monitoring fainter stars, where f_{bi} is the binary frequency. Therefore, we conclude that the companion-associated events comprise a non-negligible fraction of all events. However, their contribution to the optical depth is not large enough to explain the systematic difference between the optical depth estimates based on the two different methods.Comment: 4 pages, 1 figure, 1 table, ApJ, submitte

    The applicability of context-based multicast: a shopping centre scenario

    Get PDF
    This paper analyzes the applicability of context-based multicast content distribution (CBMCD) on the example of realistic push- and videobased mobile advertising services at a shopping centre. The technical results of the simulation of the service scenario show that CBMCD significantly reduces the number of unicast streams and the total volume of traffic in the network. The results of the financial analysis show that these technical benefits can be translated into considerable financial benefits due to costs savings. Taken together, these results suggest that CBMCD can be an efficient, cost-saving network traffic management approach and the basis for lucrative push services

    Planets in Stellar Clusters Extensive Search. I. Discovery of 47 Low-amplitude Variables in the Metal-rich Cluster NGC 6791 with Millimagnitude Image Subtraction Photometry

    Full text link
    We have undertaken a long-term project, Planets in Stellar Clusters Extensive Search (PISCES), to search for transiting planets in open clusters. As our first target we have chosen NGC 6791 -- a very old, populous, metal rich cluster. In this paper we present the results of a test observing run at the FLWO 1.2 m telescope. Our primary goal is to demonstrate the feasibility of obtaining the accuracy required for planetary transit detection using image subtraction photometry on data collected with a 1 m class telescope. We present a catalog of 62 variable stars, 47 of them newly discovered, most with low amplitude variability. Among those there are several BY Dra type variables. We have also observed outbursts in the cataclysmic variables B7 and B8 (Kaluzny et al. 1997).Comment: 15 pages LaTeX, including 8 PostScript figures and 3 tables. More discussion added on the implications for transit detection. Accepted for publication in the Astronomical Journal. Version with full resolution figures available through ftp at ftp://cfa-ftp.harvard.edu/pub/bmochejs/PISCES/papers/1_N6791
    corecore