5,141 research outputs found
“Feeling my Sister’s Pain”: Perceived Victim Suffering Moderates the Impact of Sexualized Music Videos on Fijian Women’s Responses to Men’s Intimate Partner Violence against Women
To better understand how sexualized music videos affect women’s responses to intimate partner violence (IPV), we examined the role of individual variability in perceived victim pain and perceived victim culpability in moderating and mediating (respectively) the priming effects of sexual music videos on women. Female Fijian college students (n = 243) were randomly assigned to one of three viewing conditions: stereotyped sexual music videos, non-stereotyped/non-sexual music videos, or neutral videos. All participants then read a portrayal of a male-toward-female IPV episode and their perceptions of the female victim and male perpetrator were assessed. Only women who minimized the victim’s pain were adversely affected by exposure to the stereotyped sexual videos. Specifically, for women who perceived low victim pain, those in the stereotyped video condition perceived the victim as more culpable and reported greater perpetrator-directed favorable responding than those in the other two conditions. For these women who perceived low victim pain, perceptions of victim culpability mediated the impact of video type on perpetrator-favorable responding. The findings help us better understand susceptibility to the negative impact of stereotypical sexual videos and highlight areas, such as emphasizing the suffering of victims and reducing myths about victim culpability, which may be worthy of particular emphasis in interventions
Capillary pumped loop body heat exchanger
A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized
TALON - The Telescope Alert Operation Network System: Intelligent Linking of Distributed Autonomous Robotic Telescopes
The internet has brought about great change in the astronomical community,
but this interconnectivity is just starting to be exploited for use in
instrumentation. Utilizing the internet for communicating between distributed
astronomical systems is still in its infancy, but it already shows great
potential. Here we present an example of a distributed network of telescopes
that performs more efficiently in synchronous operation than as individual
instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of
telescopes at LANL that has intelligent intercommunication, combined with
wide-field optics, temporal monitoring software, and deep-field follow-up
capability all working in closed-loop real-time operation. The Telescope ALert
Operations Network (TALON) is a network server that allows intercommunication
of alert triggers from external and internal resources and controls the
distribution of these to each of the telescopes on the network. TALON is
designed to grow, allowing any number of telescopes to be linked together and
communicate. Coupled with an intelligent alert client at each telescope, it can
analyze and respond to each distributed TALON alert based on the telescopes
needs and schedule.Comment: Presentation at SPIE 2004, Glasgow, Scotland (UK
Use of bioinformatics and PCR in the search for ABC transporter homology among various bacteria
Bioinformatics databases and search tools are utilised to
produce polymerase chain reaction (PCR) primers for the
amplification of an ABC transporter gene from the clinically important anaerobe Finegoldia magna. On sequencing, a 450 base pair amplicon showed homology with the amino acid transporter of Enterococcus faecalis. Little sequence data is available for F. magna and the newly
isolated DNA could be a useful tool in the identification of
this organism in clinical specimens
CAD identification and validation of a non-linear dynamic model for performance analysis of large-signal amplifiers
We describe the CAD identification and software implementation of a Volterra-like integral series expansion for the behavioral-level simulation of communication amplifiers. The model represents an improvement with respect to the classical AM-AM AM-PM memoryless approach. The performance of the model is compared with both the AM-AM AM-PM approach and circuit-level CAD simulatio
SkyDOT (Sky Database for Objects in the Time Domain): A Virtual Observatory for Variability Studies at LANL
The mining of Virtual Observatories (VOs) is becoming a powerful new method
for discovery in astronomy. Here we report on the development of SkyDOT (Sky
Database for Objects in the Time domain), a new Virtual Observatory, which is
dedicated to the study of sky variability. The site will confederate a number
of massive variability surveys and enable exploration of the time domain in
astronomy. We discuss the architecture of the database and the functionality of
the user interface. An important aspect of SkyDOT is that it is continuously
updated in near real time so that users can access new observations in a timely
manner. The site will also utilize high level machine learning tools that will
allow sophisticated mining of the archive. Another key feature is the real time
data stream provided by RAPTOR (RAPid Telescopes for Optical Response), a new
sky monitoring experiment under construction at Los Alamos National Laboratory
(LANL).Comment: to appear in SPIE proceedings vol. 4846, 11 pages, 5 figure
Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors
Current models propose that group 2 innate lymphoid cells (ILC2s) are generated in the bone marrow. Here, we demonstrate that subsets of these cells can differentiate from multipotent progenitors and committed T cell precursors in the thymus, both in vivo and in vitro. These thymic ILC2s exit the thymus, circulate in the blood, and home to peripheral tissues. Ablation of E protein transcription factors greatly promotes the ILC fate while impairing B and T cell development. Consistently, a transcriptional network centered on the ZBTB16 transcription factor and IL-4 signaling pathway is highly up-regulated due to E protein deficiency. Our results show that ILC2 can still arise from what are normally considered to be committed T cell precursors, and that this alternative cell fate is restrained by high levels of E protein activity in these cells. Thymus-derived lung ILC2s of E protein-deficient mice show different transcriptomes, proliferative properties, and cytokine responses from wild-type counterparts, suggesting potentially distinct functions
Systematic classification of non-coding RNAs by epigenomic similarity
BACKGROUND: Even though only 1.5% of the human genome is translated into proteins, recent reports indicate that most of it is transcribed into non-coding RNAs (ncRNAs), which are becoming the subject of increased scientific interest. We hypothesized that examining how different classes of ncRNAs co-localized with annotated epigenomic elements could help understand the functions, regulatory mechanisms, and relationships among ncRNA families. RESULTS: We examined 15 different ncRNA classes for statistically significant genomic co-localizations with cell type-specific chromatin segmentation states, transcription factor binding sites (TFBSs), and histone modification marks using GenomeRunner (http://www.genomerunner.org). P-values were obtained using a Chi-square test and corrected for multiple testing using the Benjamini-Hochberg procedure. We clustered and visualized the ncRNA classes by the strength of their statistical enrichments and depletions. We found piwi-interacting RNAs (piRNAs) to be depleted in regions containing activating histone modification marks, such as H3K4 mono-, di- and trimethylation, H3K27 acetylation, as well as certain TFBSs. piRNAs were further depleted in active promoters, weak transcription, and transcription elongation regions, and enriched in repressed and heterochromatic regions. Conversely, transfer RNAs (tRNAs) were depleted in heterochromatin regions and strongly enriched in regions containing activating H3K4 di- and trimethylation marks, H2az histone variant, and a variety of TFBSs. Interestingly, regions containing CTCF insulator protein binding sites were associated with tRNAs. tRNAs were also enriched in the active, weak and poised promoters and, surprisingly, in regions with repetitive/copy number variations. CONCLUSIONS: Searching for statistically significant associations between ncRNA classes and epigenomic elements permits detection of potential functional and/or regulatory relationships among ncRNA classes, and suggests cell type-specific biological roles of ncRNAs
Proceedings of the 2015 MidSouth Computational Biology and Bioinformatics Society (MCBIOS) Conference
Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria
Clostridium difficile is a Gram-positive spore-forming anaerobe and a major cause of antibiotic-associated diarrhoea. Disruption of the commensal microbiota, such as through treatment with broad-spectrum antibiotics, is a critical precursor for colonisation by C. difficile and subsequent disease. Furthermore, failure of the gut microbiota to recover colonisation resistance can result in recurrence of infection. An unusual characteristic of C. difficile among gut bacteria is its ability to produce the bacteriostatic compound para-cresol (p-cresol) through fermentation of tyrosine. Here, we demonstrate that the ability of C. difficile to produce p-cresol in vitro provides a competitive advantage over gut bacteria including Escherichia coli, Klebsiella oxytoca and Bacteroides thetaiotaomicron. Metabolic profiling of competitive co-cultures revealed that acetate, alanine, butyrate, isobutyrate, p-cresol and p-hydroxyphenylacetate were the main metabolites responsible for differentiating the parent strain C. difficile (630Δerm) from a defined mutant deficient in p-cresol production. Moreover, we show that the p-cresol mutant displays a fitness defect in a mouse relapse model of C. difficile infection (CDI). Analysis of the microbiome from this mouse model of CDI demonstrates that colonisation by the p-cresol mutant results in a distinctly altered intestinal microbiota, and metabolic profile, with a greater representation of Gammaproteobacteria, including the Pseudomonales and Enterobacteriales. We demonstrate that Gammaproteobacteria are susceptible to exogenous p-cresol in vitro and that there is a clear divide between bacterial Phyla and their susceptibility to p-cresol. In general, Gram-negative species were relatively sensitive to p-cresol, whereas Gram-positive species were more tolerant. This study demonstrates that production of p-cresol by C. difficile has an effect on the viability of intestinal bacteria as well as the major metabolites produced in vitro. These observations are upheld in a mouse model of CDI, in which p-cresol production affects the biodiversity of gut microbiota and faecal metabolite profiles, suggesting that p-cresol production contributes to C. difficile survival and pathogenesis.Peer reviewedFinal Published versio
- …
