1,609 research outputs found

    Mapping the Northern Galactic Disk Warp with Classical Cepheids

    Get PDF
    We present an updated three dimensional map of the Milky Way based on a sample of 2431 classical Cepheid variable stars, supplemented with about 200 newly detected classical Cepheids from the OGLE survey. The new objects were discovered as a result of a dedicated observing campaign of the ≈280 square degree extension of the OGLE footprint of the Galactic disk during 2018-2019 observing seasons. These regions cover the main part of the northern Galactic warp that has been deficient in Cepheids so far. We use direct distances to the sample of over 2390 classical Cepheids to model the distribution of the young stellar population in the Milky Way and recalculate the parameters of the Galactic disk warp. Our data show that its northern part is very prominent and its amplitude is ≈10% larger than that of the southern part. By combining Gaia astrometric data with the Galactic rotation curve and distances to Cepheids from our sample, we construct a map of the vertical component of the velocity vector for all Cepheids in the Milky Way disk. We find large-scale vertical motions with amplitudes of 10-20 km/s, such that Cepheids located in the northern warp exhibit large positive vertical velocity (toward the north Galactic pole), whereas those in the southern warp - negative vertical velocity (toward the south Galactic pole)

    Over 78 000 RR Lyrae Stars in the Galactic Bulge and Disk from the OGLE Survey

    Get PDF
    We present an upgrade of the OGLE Collection of RR Lyrae stars in the Galactic bulge and disk. The size of our sample has been doubled and reached 78 350 RR Lyr variables, of which 56 508 are fundamental-mode pulsators (RRab stars), 21 321 pulsate solely in the first-overtone (RRc stars), 458 are classical double-mode pulsators (RRd stars), and 63 are anomalous RRd variables (including six triple-mode pulsators). For all the newly identified RR Lyr stars, we publish time-series photometry obtained during the OGLE Galaxy Variability Survey. We present the spatial distribution of RR Lyr stars on the sky, provide a list of globular clusters hosting RR Lyr variables, and discuss the Petersen diagram for multimode pulsators. We find new RRd stars belonging to a compact group in the Petersen diagram (with period ratios P₁₀/P_F ≈ 0.74 and fundamental-mode periods P_F ≈ 0.44 d) and we show that their spatial distribution is roughly spherically symmetrical around the Milky Way center

    Ogle-2018-blg-0677lb: A super earth near the galactic bulge

    Get PDF
    We report the analysis of the microlensing event OGLE-2018-BLG-0677. A small feature in the light curve of the event leads to the discovery that the lens is a star-planet system. Although there are two degenerate solutions that could not be distinguished for this event, both lead to a similar planet-host mass ratio. We perform a Bayesian analysis based on a Galactic model to obtain the properties of the system and find that the planet corresponds to a super-Earth/sub-Neptune with a mass Mplanet=3.962.66+5.88MM_{\mathrm{planet}} = {3.96}^{+5.88}_{-2.66}\mathrm{M_\oplus}. The host star has a mass Mhost=0.120.08+0.14M M_{\mathrm{host}} = {0.12}^{+0.14}_{-0.08}\mathrm{M_\odot}. The projected separation for the inner and outer solutions are 0.630.17+0.20{0.63}^{+0.20}_{-0.17}~AU and 0.720.19+0.23{0.72}^{+0.23}_{-0.19}~AU respectively. At Δχ2=χ2(1L1S)χ2(2L1S)=46\Delta\chi^2=\chi^2({\rm 1L1S})-\chi^2({\rm 2L1S})=46, this is by far the lowest Δχ2\Delta\chi^2 for any securely-detected microlensing planet to date, a feature that is closely connected to the fact that it is detected primarily via a "dip" rather than a "bump".Comment: 15 page, 12 figures, Published in A

    Transitions in Arctic ecosystems: ecological implications of a changing hydrological regime

    Get PDF
    Numerous international scientific assessments and related articles have, during the last decade, described the observed and potential impacts of climate change as well as other related environmental stressors on Arctic ecosystems. There is increasing recognition that observed and projected changes in freshwater sources, fluxes, and storage will have profound implications for the physical, biogeochemical, biological and ecological processes and properties of Arctic terrestrial and freshwater ecosystems. However, a significant level of uncertainty remains in relation to forecasting the impacts of an intensified hydrological regime and related cryospheric change on ecosystem structure and function. As the terrestrial and freshwater ecology component of the Arctic Freshwater Synthesis we review these uncertainties and recommend enhanced coordinated circumpolar research and monitoring efforts to improve quantification and prediction of how an altered hydrological regime influences local, regional and circumpolar-level responses in terrestrial and freshwater systems. Specifically, we evaluate i) changes in ecosystem productivity; ii) alterations in ecosystem-level biogeochemical cycling and chemical transport; iii) altered landscapes, successional trajectories and creation of new habitats; iv) altered seasonality and phenological mismatches; and, v) gains or losses of species and associated trophic interactions. We emphasize the need for developing a process-based understanding of inter-ecosystem interactions, along with improved predictive models. We recommend enhanced use of the catchment-scale as an integrated unit of study, thereby more explicitly considering the physical, chemical and ecological processes and fluxes across a full freshwater continuum in a geographic region and spatial range of hydro-ecological units (e.g., stream-pond-lake-river-near shore marine environments)

    OGLE-2018-BLG-0532Lb: Cold Neptune With Possible Jovian Sibling

    Get PDF
    We report the discovery of the planet OGLE-2018-BLG-0532Lb, with very obvious signatures in the light curve that lead to an estimate of the planet-host mass ratio q=Mplanet/Mhost1×104q=M_{\rm planet}/M_{\rm host}\simeq 1\times10^{-4}. Although there are no obvious systematic residuals to this double-lens/single-source (2L1S) fit, we find that χ2\chi^2 can be significantly improved by adding either a third lens (3L1S, Δχ2=81\Delta\chi^2=81) or second source (2L2S, Δχ2=65\Delta\chi^2=65) to the lens-source geometry. After thorough investigation, we conclude that we cannot decisively distinguish between these two scenarios and therefore focus on the robustly-detected planet. However, given the possible presence of a second planet, we investigate to what degree and with what probability such additional planets may affect seemingly single-planet light curves. Our best estimates for the properties of the lens star and the secure planet are: a host mass M0.25MM\sim 0.25\,M_\odot, system distance DL1D_L\sim 1\,kpc and planet mass mp,1=8Mm_{p,1}= 8\,M_\oplus with projected separation a1,=1.4a_{1,\perp}=1.4\,au. However, there is a relatively bright I=18.6I=18.6 (and also relatively blue) star projected within <50<50\,mas of the lens, and if future high-resolution images show that this is coincident with the lens, then it is possible that it is the lens, in which case, the lens would be both more massive and more distant than the best-estimated values above.Comment: 48 pages, 9 figures, 7 table

    Prospects for K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu } at CERN in NA62

    Full text link
    The NA62 experiment will begin taking data in 2015. Its primary purpose is a 10% measurement of the branching ratio of the ultrarare kaon decay K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu }, using the decay in flight of kaons in an unseparated beam with momentum 75 GeV/c.The detector and analysis technique are described here.Comment: 8 pages for proceedings of 50 Years of CP

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde
    corecore