3,730 research outputs found
Enhancement of laser cooling by the use of magnetic gradients
We present a laser cooling scheme for trapped ions and atoms using a
combination of laser couplings and a magnetic gradient field. In a
Schrieffer-Wolff transformed picture, this setup cancels the carrier and blue
sideband terms completely resulting in an improved cooling behaviour compared
to standard cooling schemes (e.g. sideband cooling) and allowing cooling to the
vibrational ground state. A condition for optimal cooling rates is presented
and the cooling behaviour for different Lamb-Dicke parameters and spontaneous
decay rates is discussed. Cooling rates of one order of magnitude less than the
trapping frequency are achieved using the new cooling method. Furthermore the
scheme turns out to be robust under deviations from the optimal parameters and
moreover provides good cooling rates also in the multi particle case.Comment: 14 pages, 8 figure
Trapped ion chain as a neural network
We demonstrate the possibility of realizing a neural network in a chain of
trapped ions with induced long range interactions. Such models permit to store
information distributed over the whole system. The storage capacity of such
network, which depends on the phonon spectrum of the system, can be controlled
by changing the external trapping potential and/or by applying longitudinal
local magnetic fields. The system properties suggest the possibility of
implementing robust distributed realizations of quantum logic.Comment: 4 pages, 3 figure
Scalable solid-state quantum computation in decoherence-free subspaces with trapped ions
We propose a decoherence-free subspaces (DFS) scheme to realize scalable
quantum computation with trapped ions. The spin-dependent Coulomb interaction
is exploited, and the universal set of unconventional geometric quantum gates
is achieved in encoded subspaces that are immune from decoherence by collective
dephasing. The scalability of the scheme for the ion array system is
demonstrated, either by an adiabatic way of switching on and off the
interactions, or by a fast gate scheme with comprehensive DFS encoding and
noise decoupling techniques.Comment: 4 pages, 1 figur
Systematics of the odd-even effect in the resonance ionization of Os and Ti
Measurements of the odd-even effect in the mass spectrometric analysis of Ti and
Os isotopes by resonance ionization mass spectrometry have been performed for ΔJ = + 1, 0 and -1 transitions. Under saturating conditions of the ionization and for ΔJ = + 1 transitions odd-even
effects are reduced below the 0.5% level. Depending on the polarization state of the laser large
odd isotope enrichments are observed for ΔJ = 0 and -1 transitions which can be reduced below
the 0.5% level by depolarization of the laser field
Noncontact modulation calorimetry of metallic liquids in low Earth orbit
Noncontact modulation calorimetry using electromagnetic heating and radiative heat loss under ultrahigh-vacuum conditions has been applied to levitated solid, liquid, and metastable liquid samples. This experiment requires a reduced gravity environment over an extended period of time and allows the measurement of several thermophysical properties, such as the enthalpy of fusion and crystallization, specific heat, total hemispherical emissivity, and effective thermal conductivity with high precision as a function of temperature. From the results on eutectic glass forming Zr-based alloys thermodynamic functions are obtained which describe the glass-forming ability of these alloys
Systematics of isotope ratio measurements with resonant laser photoionization sources
Sources of laser-induced even-even and odd-even isotopic selectivity in the resonance ionization mass
spectroscopy of Os and Ti have been investigated experimentally for various types of transitions. A set
of conditions with regard to laser bandwidth and frequency tuning, polarization state and intensity was
obtained for which isotopic selectivity is either absent or reduced below the 2 % level
Simultaneous cooling of axial vibrational modes in a linear ion trap
In order to use a collection of trapped ions for experiments where a well-defined preparation of vibrational states is necessary, all vibrational modes have to be cooled to ensure precise and repeatable manipulation of the ions quantum states. A method for simultaneous sideband cooling of all axial vibrational modes is proposed. By application of a magnetic field gradient the absorption spectrum of each ion is modified such that sideband resonances of different vibrational modes coincide. The ion string is then irradiated with monochromatic electromagnetic radiation, in the optical or microwave regime, for sideband excitation. This cooling scheme is investigated in detailed numerical studies. Its application for initializing ion strings for quantum information processing is extensively discussed
Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices
We observed the coulomb blockade phenomena in ferromagnetic contacting single
wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was
observed with existing only the Zeeman splitting at 4K. Combining with other
effects, the ferromagnetic leads prevent the orbital spin states splitting with
magnetic field up to 2 Tesla at 4K. With increasing magnetic field further,
both positive or negative coulomb peaks shift slopes are observed associating
with clockwise and anticlockwise orbital state splitting. The strongly
suppressed/enhanced of the conductance has been observed associating with the
magnetic field induced orbital states splitting/converging
Radio Sources in the 2dF Galaxy Redshift Survey. I. Radio Source Populations
We present the first results from a study of the radio continuum properties
of galaxies in the 2dF Galaxy Redshift Survey, based on thirty 2dF fields
covering a total area of about 100 square degrees. About 1.5% of galaxies with
b(J) < 19.4 mag are detected as radio continuum sources in the NRAO VLA Sky
Survey (NVSS). Of these, roughly 40% are star-forming galaxies and 60% are
active galaxies (mostly low-power radio galaxies and a few Seyferts). The
combination of 2dFGRS and NVSS will eventually yield a homogeneous set of
around 4000 radio-galaxy spectra, which will be a powerful tool for studying
the distriibution and evolution of both AGN and starburst galaxies out to
redshift z=0.3.Comment: 14 pages, 7 figures, accepted for publication in PAS
- …
