8,744 research outputs found
Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection
Background - Transient (low-conductance) opening of the mitochondrial permeability transition pore (mPTP) may limit mitochondrial calcium load and mediate mitochondrial reactive oxygen species (ROS) signaling. We hypothesize that transient mPTP opening and ROS mediate the protection associated with myocardial preconditioning and mitochondrial uncoupling.Methods and Results - Isolated perfused rat hearts were subjected to 35 minutes of ischemia/ 120 minutes of reperfusion, and the infarct-risk-volume ratio was determined by tetrazolium staining. Inhibiting mPTP opening during the preconditioning phase with cyclosporine-A (CsA, 0.2 mumol/L) or sanglifehrin-A (SfA, 1.0 mumol/L) abolished the protection associated with ischemic preconditioning (IPC) ( 20.2 +/- 3.6% versus 45.9 +/- 2.5% with CsA, 49.0 +/- 7.1% with SfA; P < 0.001); and pharmacological preconditioning with diazoxide (Dzx, 30 mu mol/L) (22.1 +/- 2.7% versus 46.3 +/- 3.0% with CsA, 48.4 +/- 5.5% with SfA; P < 0.001), CCPA ( the adenosine A1-receptor agonist, 200 nmol/L) (24.9 +/- 4.5% versus 54.4 +/- 6.6% with CsA, 42.6 +/- 9.0% with SfA; P < 0.001), or 2,4-dinitrophenol (DNP, the mitochondrial uncoupler, 50 mu mol/L) (15.7 +/- 2.7% versus 40.8 +/- 5.5% with CsA, 34.3 +/- 3.1% with SfA; P < 0.001), suggesting that mPTP opening during the preconditioning phase is required to mediate protection in these settings. Inhibiting ROS during the preconditioning protocols with N-mercaptopropionylglycine (MPG, 1 mmol/L) also abolished the protection associated with IPC (20.2 +/- 3.6% versus 47.1 +/- 3.8% with MPG; P < 0.001), diazoxide (22.1 +/- 2.7% versus 56.3 +/- 3.8% with MPG; P < 0.001), and DNP (15.7 +/- 2.7% versus 50.7 +/- 6.6% with MPG; P < 0.001) but not CCPA (24.9 +/- 4.5% versus 26.5 +/- 8.4% with MPG; P = NS). Further experiments in adult rat myocytes demonstrated that diazoxide induced CsA-sensitive, low-conductance transient mPTP opening (represented by a 28 +/- 3% reduction in mitochondrial calcein fluorescence compared with control; P < 0.01).Conclusions - We report that the protection associated with IPC, diazoxide, and mitochondrial uncoupling requires transient mPTP opening and ROS
Enrichment Procedures for Soft Clusters: A Statistical Test and its Applications
Clusters, typically mined by modeling locality of attribute spaces, are often evaluated for their ability to demonstrate ‘enrichment’ of categorical features. A cluster enrichment procedure evaluates the membership of a cluster for significant representation in pre-defined categories of interest. While classical enrichment procedures assume a hard clustering definition, in this paper we introduce a new statistical test that computes enrichments for soft clusters. We demonstrate an application of this test in refining and evaluating soft clusters for classification of remotely sensed images
An SMP Soft Classification Algorithm for Remote Sensing
This work introduces a symmetric multiprocessing (SMP) version of the continuous iterative
guided spectral class rejection (CIGSCR) algorithm, a semiautomated classification algorithm for remote
sensing (multispectral) images. The algorithm uses soft data clusters to produce a soft classification
containing inherently more information than a comparable hard classification at an increased computational
cost. Previous work suggests that similar algorithms achieve good parallel scalability, motivating the parallel
algorithm development work here. Experimental results of applying parallel CIGSCR to an image with
approximately 10^8 pixels and six bands demonstrate superlinear speedup. A soft two class classification is
generated in just over four minutes using 32 processors
The consumer price index
The consumer price index (CPI) is probably the most closely watched indicator of inflation in the U.S. economy. In this article, Mark Wynne and Fiona Sigalla explain the construction of the CPI and evaluate some of its potential shortcomings as a measure of inflation. Specifically, they examine the discrepancies that arise between the CPI and the true cost- of-living index as a result of improvements in the quality of goods, the introduction of new goods, substitution on the part of consumers between different goods and retail outlets, and the difficulty of measuring the prices actually paid by consumers for the goods they purchase. ; The authors review the literature that quantifies these discrepancies, with the objective of estimating the magnitude of the overall bias in the CPI. Wynne and Sigalla argue that, in fact, remarkably little is known about the extent or significance of the overall bias in the CPI. They conclude that biases in the CPI cause it to overstate inflation by no more than 1 percent a year, and probably less.Consumer price indexes ; Prices
A connection between the Camassa-Holm equations and turbulent flows in channels and pipes
In this paper we discuss recent progress in using the Camassa-Holm equations
to model turbulent flows. The Camassa-Holm equations, given their special
geometric and physical properties, appear particularly well suited for studying
turbulent flows. We identify the steady solution of the Camassa-Holm equation
with the mean flow of the Reynolds equation and compare the results with
empirical data for turbulent flows in channels and pipes. The data suggests
that the constant version of the Camassa-Holm equations, derived under
the assumptions that the fluctuation statistics are isotropic and homogeneous,
holds to order distance from the boundaries. Near a boundary, these
assumptions are no longer valid and the length scale is seen to depend
on the distance to the nearest wall. Thus, a turbulent flow is divided into two
regions: the constant region away from boundaries, and the near wall
region. In the near wall region, Reynolds number scaling conditions imply that
decreases as Reynolds number increases. Away from boundaries, these
scaling conditions imply is independent of Reynolds number. Given the
agreement with empirical and numerical data, our current work indicates that
the Camassa-Holm equations provide a promising theoretical framework from which
to understand some turbulent flows.Comment: tex file, 29 pages, 4 figures, Physics of Fluids (in press
Calculation of transonic steady and oscillatory pressures on a low aspect ratio model and comparison with experiment
Pressure data measured by the British Royal Aircraft Establishment for the AGARD SMP tailplane are compared with results calculated using the transonic small perturbation code XTRAN3S. A brief description of the analysis is given and a recently developed finite difference grid is described. Results are presented for five steady and nine harmonically oscillating cases near zero angle of attack and for a range of subsonic and transonic Mach numbers
Frustration of crystallisation by a liquid–crystal phase
Frustration of crystallisation by locally favoured structures is critically important in linking the phenomena of supercooling, glass formation, and liquid-liquid transitions. Here we show that the putative liquid-liquid transition in n-butanol is in fact caused by geometric frustration associated with an isotropic to rippled lamellar liquid-crystal transition. Liquid-crystal phases are generally regarded as being “in between” the liquid and the crystalline state. In contrast, the liquid-crystal phase in supercooled n-butanol is found to inhibit transformation to the crystal. The observed frustrated phase is a template for similar ordering in other liquids and likely to play an important role in supercooling and liquid-liquid transitions in many other molecular liquids
Sound propagation in and radiation from acoustically lined flow ducts: A comparison of experiment and theory
The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented
Continuous Iterative Guided Spectral Class Rejection Classification Algorithm: Part 2
This paper describes in detail the continuous iterative guided spectral class rejection (CIGSCR) classification method based on the iterative guided spectral class rejection (IGSCR) classification method for remotely sensed data. Both CIGSCR and IGSCR use semisupervised clustering to locate clusters that are associated with classes in a classification scheme. In CIGSCR and IGSCR, training data are used to evaluate the strength of the association between a particular cluster and a class, and a statistical hypothesis test is used to determine which clusters should be associated with a class and used for classification and which clusters should be rejected and possibly refined. Experimental results indicate that the soft classification output by CIGSCR is reasonably accurate (when compared to IGSCR), and the fundamental algorithmic changes in CIGSCR (from IGSCR) result in CIGSCR being less sensitive to input parameters that influence iterations. Furthermore, evidence is presented that the semisupervised clustering in CIGSCR produces more accurate classifications than classification based on clustering without supervision
Exact Optics: A unification of optical telescope design
A perfect focus telescope is one in which all rays parallel to the axis meet
at a point and give equal magnification there. It is shown that these two
conditions define the shapes of both primary and secondary mirrors. Apart from
scale, the solution depends upon two parameters, , which gives the mirror
separation in terms of the effective focal length, and , which gives the
relative position of the final focus in that unit. The two conditions ensure
that the optical systems have neither spherical aberration nor coma, no matter
how fast the ratio. All known coma--free systems emerge as approximate
special cases. In his classical paper, K. Schwarzschild studied all two mirror
systems whose profiles were conic sections. We make no such a priori shape
conditions but demand a perfect focus and solve for the mirrors' shapes.Comment: 11 pages, LaTex ([alleqno,epsfig]{mn}), 7 Figures (eps), accepted by
MNRA
- …
