2,319 research outputs found
Phase diagram and dynamic response functions of the Holstein-Hubbard model
We present the phase diagram and dynamical correlation functions for the
Holstein-Hubbard model at half filling and at zero temperature. The
calculations are based on the Dynamical Mean Field Theory. The effective
impurity model is solved using Exact Diagonalization and the Numerical
Renormalization Group. Excluding long-range order, we find three different
paramagnetic phases, metallic, bipolaronic and Mott insulating, depending on
the Hubbard interaction U and the electron-phonon coupling g. We present the
behaviour of the one-electron spectral functions and phonon spectra close to
the metal insulator transitions.Comment: contribution to the SCES04 conferenc
First- and Second Order Phase Transitions in the Holstein-Hubbard Model
We investigate metal-insulator transitions in the Holstein-Hubbard model as a
function of the on-site electron-electron interaction U and the electron-phonon
coupling g. We use several different numerical methods to calculate the phase
diagram, the results of which are in excellent agreement. When the
electron-electron interaction U is dominant the transition is to a
Mott-insulator; when the electron-phonon interaction dominates, the transition
is to a localised bipolaronic state. In the former case, the transition is
always found to be second order. This is in contrast to the transition to the
bipolaronic state, which is clearly first order for larger values of U. We also
present results for the quasiparticle weight and the double-occupancy as
function of U and g.Comment: 6 pages, 5 figure
Polaronic signature in the metallic phase of La0.7Ca0.3MnO3 films detected by scanning tunneling spectroscopy
In this work we map tunnel conductance curves with nanometric spatial
resolution, tracking polaronic quasiparticle excitations when cooling across
the insulator-to-metal transition in La0.7Ca0.3MnO3 films. In the insulating
phase the spectral signature of polarons, a depletion of conductance at low
bias flanked by peaks, is detected all over the scanned surface. These features
are still observed at the transition and persist on cooling into the metallic
phase. Polaron-binding energy maps reveal that polarons are not confined to
regions embedded in a highly-conducting matrix but are present over the whole
field of view both above and below the transition temperature.Comment: 10 pages, 4 figure
Major basic protein, but not eosinophil cationic protein or eosinophil protein X, is related to atopy in cystic fibrosis.
Increased eosinophil granule proteins have been described in serum and sputum samples of patients with cystic fibrosis (CF). It has been assumed that eosinophil degranulation is enhanced in atopic subjects - as in asthmatics. Since in CF no differences in eosinophil cationic protein (ECP), eosinophil protein X (EPX), and eosinophil peroxidase between atopic and nonatopic subjects have been detected, we investigated whether major basic protein (MBP) is increased in serum and sputum samples derived from atopic (n = 14) compared with nonatopic CF subjects (n = 26). In CF patients, high mean serum (sputum) levels of ECP 29.7 microg/l (2.7 mg/l), EPX 53.7 microg/l (7.9 mg/l), and MBP 984.6 microg/l but low sputum MBP levels (57.4 microg/l) were measured. In addition, in serum and in sputum samples, a significant correlation between MBP and ECP (P<0.03 and P<0.0001, respectively) or EPX (P<0.05 and P<0.0004, respectively) was detected. By subdivision of the patients into allergic and nonallergic subjects, significant differences were found for serum MBP values only(mean 1382.2 microg/l vs. 770.5 microg/l; P<0.0001), but not for ECP or EPX serum levels or for eosinophil proteins in sputum. Although no differences between atopic and nonatopic CF patients in ECP and EPX were found, serum MBP levels were higher in patients sensitized to inhalant allergens than in nonsensitized subjects. These results indicate differential release of eosinophil granule proteins in peripheral blood from eosinophils, and they also indicate that MBP in serum likely is to be a better discriminator of atopy in CF
Contextual Object Detection with a Few Relevant Neighbors
A natural way to improve the detection of objects is to consider the
contextual constraints imposed by the detection of additional objects in a
given scene. In this work, we exploit the spatial relations between objects in
order to improve detection capacity, as well as analyze various properties of
the contextual object detection problem. To precisely calculate context-based
probabilities of objects, we developed a model that examines the interactions
between objects in an exact probabilistic setting, in contrast to previous
methods that typically utilize approximations based on pairwise interactions.
Such a scheme is facilitated by the realistic assumption that the existence of
an object in any given location is influenced by only few informative locations
in space. Based on this assumption, we suggest a method for identifying these
relevant locations and integrating them into a mostly exact calculation of
probability based on their raw detector responses. This scheme is shown to
improve detection results and provides unique insights about the process of
contextual inference for object detection. We show that it is generally
difficult to learn that a particular object reduces the probability of another,
and that in cases when the context and detector strongly disagree this learning
becomes virtually impossible for the purposes of improving the results of an
object detector. Finally, we demonstrate improved detection results through use
of our approach as applied to the PASCAL VOC and COCO datasets
Exploiting Chordality in Optimization Algorithms for Model Predictive Control
In this chapter we show that chordal structure can be used to devise
efficient optimization methods for many common model predictive control
problems. The chordal structure is used both for computing search directions
efficiently as well as for distributing all the other computations in an
interior-point method for solving the problem. The chordal structure can stem
both from the sequential nature of the problem as well as from distributed
formulations of the problem related to scenario trees or other formulations.
The framework enables efficient parallel computations.Comment: arXiv admin note: text overlap with arXiv:1502.0638
No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-T Superconductors
We report far infrared transmission measurements on single crystal samples
derived from BiSrCaCuO. The impurity scattering rate of
the samples was varied by electron-beam irradiation, 50MeV O ion
irradiation, heat treatment in vacuum, and Y doping. Although substantial
changes in the infrared spectra were produced, in no case was a feature
observed that could be associated with the superconducting energy gap. These
results all but rule out ``clean limit'' explanations for the absence of the
spectroscopic gap in this material, and provide evidence that the
superconductivity in BiSrCaCuO is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for
publication in Phys. Rev. Lett. IRDIRT
Dynamical mean field theory for transition temperature and optics of CMR manganites
A tight binding parametrization of local spin density functional band theory
is combined with a dynamical mean field treatment of correlations to obtain a
theory of the magnetic transition temperature, optical conductivity and T=0
spinwave stiffness of a minimal model for the pseudocubic metallic
manganites such a . The results indicate that previous
estimates of obtained by one of us (Phys. Rev. \textbf{B61} 10738-49
(2000)) are in error, that in fact the materials are characterized by Hunds
coupling , and that magnetic-order driven changes in the
kinetic energy may not be the cause of the observed 'colossal' magnetoresistive
and multiphase behavior in the manganites, raising questions about our present
understanding of these materials.Comment: Published version; 10 pages, 9 figure
First Order Bipolaronic Transition at Finite Temperature in the Holstein Model
We investigate the Holstein model by using the dynamical mean-field theory
combined with the exact diagonalization method. Below a critical temperature
Tcr, a coexistence of the polaronic and the bipolaronic solutions is found for
the same value of the electron-phonon coupling $ in the range gc1(T)<g<gc2(T).
In the coexistence region, the system shows a first order phase transition from
the bipolaronic to the polaronic states as T decreases at T=Tp(<Tcr), where the
double occupancy and the lattice fluctuation together with the anharmonicity of
the effective ion potential change discontinuously without any symmetry
breaking. The obtained bipolaronic transition seems to be consistent with the
rattling transition in the beta-pyrochlore oxide KOs2O6.Comment: 5 pages, 5 figures, J. Phys. Soc. Jpn. 79 (2010) 09370
- …
