29,784 research outputs found

    Pressure-induced phase transitions in AgClO4

    Get PDF
    AgClO4 has been studied under compression by x-ray diffraction and density functional theory calculations. Experimental evidence of a structural phase transition from the tetragonal structure of AgClO4 to an orthorhombic barite-type structure has been found at 5.1 GPa. The transition is supported by total-energy calculations. In addition, a second transition to a monoclinic structure is theoretically proposed to take place beyond 17 GPa. The equation of state of the different phases is reported as well as the calculated Raman-active phonons and their pressure evolution. Finally, we provide a description of all the structures of AgClO4 and discuss their relationships. The structures are also compared with those of AgCl in order to explain the structural sequence determined for AgClO4.Comment: 38 pages, 11 figures, 4 table

    Primordial Black Hole Formation from Inflaton

    Get PDF
    Measurements of the distances to SNe Ia have produced strong evidence that the Universe is really accelarating, implying the existence of a nearly uniform component of dark energy with the simplest explanation as a cosmological constant. In this paper a small changing cosmological term is proposed, which is a function of a slow-rolling scalar field, by which the de Sitter primordial black holes' properties, for both charged and uncharged cases, are carefully examined and the relationship between the black hole formation and the energy transfer of the inflaton within this cosmological term is eluciatedComment: 6 pages, Late

    The Coincidence Problem in Holographic f(R) Gravity

    Full text link
    It is well-known that f(R)f(R) gravity models formulated in Einstein conformal frame are equivalent to Einstein gravity together with a minimally coupled scalar field. In this case, the scalar field couples with the matter sector and the coupling term is given by the conformal factor. We apply the holographic principle to such interacting models. In a spatially flat universe, we show that the Einstein frame representation of f(R)f(R) models leads to a constant ratio of energy densities of dark matter to dark energy.Comment: 10 pages, no figure

    Long-term optical and radio variability of BL Lacertae

    Full text link
    Well-sampled optical and radio light curves of BL Lacertae in B, V, R, I bands and 4.8, 8.0, 14.5 GHz from 1968 to 2014 were presented in this paper. A possible 1.26±0.051.26 \pm 0.05 yr period in optical bands and a 7.50±0.157.50 \pm 0.15 yr period in radio bands were detected based on discrete correlation function, structure function as well as Jurkevich method. Correlations among different bands were also analyzed and no reliable time delay was found between optical bands. Very weak correlations were detected between V band and radio bands. However, in radio bands the variation at low frequency lagged that at high frequency obviously. The spectrum of BL Lacertae turned mildly bluer when the object turned brighter, and stronger bluer-when-brighter trends were found for short flares. A scenario including a precessing helical jet and periodic shocks was put forward to interpret the variation characteristics of BL Lacertae.Comment: 7 pages, 11 figures, submitte
    corecore