3,522 research outputs found
Modelling Electron Spin Accumulation in a Metallic Nanoparticle
A model describing spin-polarized current via discrete energy levels of a
metallic nanoparticle, which has strongly asymmetric tunnel contacts to two
ferromagnetic leads, is presented.
In absence of spin-relaxation, the model leads to a spin-accumulation in the
nanoparticle, a difference () between the chemical potentials of
spin-up and spin-down electrons, proportional to the current and the Julliere's
tunnel magnetoresistance. Taking into account an energy dependent
spin-relaxation rate , as a function of bias
voltage () exhibits a crossover from linear to a much weaker dependence,
when equals the spin-polarized current through the
nanoparticle. Assuming that the spin-relaxation takes place via electron-phonon
emission and Elliot-Yafet mechanism, the model leads to a crossover from linear
to dependence. The crossover explains recent measurements of the
saturation of the spin-polarized current with in Aluminum nanoparticles,
and leads to the spin-relaxation rate of in an Aluminum
nanoparticle of diameter , for a transition with an energy difference of
one level spacing.Comment: 37 pages, 7 figure
Hyperbolic Kac-Moody superalgebras
We present a classification of the hyperbolic Kac-Moody (HKM) superalgebras.
The HKM superalgebras of rank larger or equal than 3 are finite in number (213)
and limited in rank (6). The Dynkin-Kac diagrams and the corresponding simple
root systems are determined. We also discuss a class of singular
sub(super)algebras obtained by a folding procedure
Lax Operator for the Quantised Orthosymplectic Superalgebra U_q[osp(2|n)]
Each quantum superalgebra is a quasi-triangular Hopf superalgebra, so
contains a \textit{universal -matrix} in the tensor product algebra which
satisfies the Yang-Baxter equation. Applying the vector representation ,
which acts on the vector module , to one side of a universal -matrix
gives a Lax operator. In this paper a Lax operator is constructed for the
-type quantum superalgebras . This can in turn be used to
find a solution to the Yang-Baxter equation acting on
where is an arbitrary module. The case is included
here as an example.Comment: 15 page
Jacobson generators of the quantum superalgebra and Fock representations
As an alternative to Chevalley generators, we introduce Jacobson generators
for the quantum superalgebra . The expressions of all
Cartan-Weyl elements of in terms of these Jacobson generators
become very simple. We determine and prove certain triple relations between the
Jacobson generators, necessary for a complete set of supercommutation relations
between the Cartan-Weyl elements. Fock representations are defined, and a
substantial part of this paper is devoted to the computation of the action of
Jacobson generators on basis vectors of these Fock spaces. It is also
determined when these Fock representations are unitary. Finally, Dyson and
Holstein-Primakoff realizations are given, not only for the Jacobson
generators, but for all Cartan-Weyl elements of .Comment: 27 pages, LaTeX; to be published in J. Math. Phy
Generalised Perk--Schultz models: solutions of the Yang-Baxter equation associated with quantised orthosymplectic superalgebras
The Perk--Schultz model may be expressed in terms of the solution of the
Yang--Baxter equation associated with the fundamental representation of the
untwisted affine extension of the general linear quantum superalgebra
, with a multiparametric co-product action as given by
Reshetikhin. Here we present analogous explicit expressions for solutions of
the Yang-Baxter equation associated with the fundamental representations of the
twisted and untwisted affine extensions of the orthosymplectic quantum
superalgebras . In this manner we obtain generalisations of the
Perk--Schultz model.Comment: 10 pages, 2 figure
Vertex Operators, Screen Currents and Correlation Functions at Arbitrary Level
Bosonized q-vertex operators related to the 4-dimensional evaluation modules
of the quantum affine superalgebra are constructed for
arbitrary level , where is a complex parameter
appearing in the 4-dimensional evaluation representations. They are
intertwiners among the level- highest weight Fock-Wakimoto modules.
Screen currents which commute with the action of up to
total differences are presented. Integral formulae for N-point functions of
type I and type II q-vertex operators are proposed.Comment: Latex file 18 page
In-vitro activity of OPC-17116 against more than 6000 consecutive clinical isolates: a multicentre international study
Molecular Clouds associated with the Type Ia SNR N103B in the Large Magellanic Cloud
N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud
(LMC). We carried out new CO( = 3-2) and CO( = 1-0)
observations using ASTE and ALMA. We have confirmed the existence of a giant
molecular cloud (GMC) at 245 km s towards the
southeast of the SNR using ASTE CO( = 3-2) data at an angular
resolution of 25 (6 pc in the LMC). Using the ALMA CO(
= 1-0) data, we have spatially resolved CO clouds along the southeastern edge
of the SNR with an angular resolution of 1.8 (0.4 pc in the
LMC). The molecular clouds show an expanding gas motion in the
position-velocity diagram with an expansion velocity of km s.
The spatial extent of the expanding shell is roughly similar to that of the
SNR. We also find tiny molecular clumps in the directions of optical nebula
knots. We present a possible scenario that N103B exploded in the wind-bubble
formed by the accretion winds from the progenitor system, and is now
interacting with the dense gas wall. This is consistent with a
single-degenerate scenario.Comment: 12 pages, 1 table, 8 figures, accepted for publication in The
Astrophysical Journal (ApJ
Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure
The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5
- …
