3,978 research outputs found
Quantum Monte Carlo diagonalization for many-fermion systems
In this study we present an optimization method based on the quantum Monte
Carlo diagonalization for many-fermion systems. Using the Hubbard-Stratonovich
transformation, employed to decompose the interactions in terms of auxiliary
fields, we expand the true ground-state wave function. The ground-state wave
function is written as a linear combination of the basis wave functions. The
Hamiltonian is diagonalized to obtain the lowest energy state, using the
variational principle within the selected subspace of the basis functions. This
method is free from the difficulty known as the negative sign problem. We can
optimize a wave function using two procedures. The first procedure is to
increase the number of basis functions. The second improves each basis function
through the operators, , using the Hubbard-Stratonovich
decomposition. We present an algorithm for the Quantum Monte Carlo
diagonalization method using a genetic algorithm and the renormalization
method. We compute the ground-state energy and correlation functions of small
clusters to compare with available data
Exclusive Queueing Process with Discrete Time
In a recent study [C Arita, Phys. Rev. E 80, 051119 (2009)], an extension of
the M/M/1 queueing process with the excluded-volume effect as in the totally
asymmetric simple exclusion process (TASEP) was introduced. In this paper, we
consider its discrete-time version. The update scheme we take is the parallel
one. A stationary-state solution is obtained in a slightly arranged matrix
product form of the discrete-time open TASEP with the parallel update. We find
the phase diagram for the existence of the stationary state. The critical line
which separates the parameter space into the regions with and without the
stationary state can be written in terms of the stationary current of the open
TASEP. We calculate the average length of the system and the average number of
particles
The importance of temporal stress variation and dynamic disequilibrium for the initiation of plate tectonics
We use 1-D thermal history models and 3-D numerical experiments to study the impact of dynamic thermal disequilibrium and large temporal variations of normal and shear stresses on the initiation of plate tectonics. Previous models that explored plate tectonics initiation from a steady state, single plate mode of convection concluded that normal stresses govern the initiation of plate tectonics, which based on our 1-D model leads to plate yielding being more likely with increasing interior heat and planet mass for a depth-dependent Byerlee yield stress. Using 3-D spherical shell mantle convection models in an episodic regime allows us to explore larger temporal stress variations than can be addressed by considering plate failure from a steady state stagnant lid configuration. The episodic models show that an increase in convective mantle shear stress at the lithospheric base initiates plate failure, which leads with our 1-D model to plate yielding being less likely with increasing interior heat and planet mass. In this out-of-equilibrium and strongly time-dependent stress scenario, the onset of lithospheric overturn events cannot be explained by boundary layer thickening and normal stresses alone. Our results indicate that in order to understand the initiation of plate tectonics, one should consider the temporal variation of stresses and dynamic disequilibrium
Off-diagonal Wave Function Monte Carlo Studies of Hubbard Model I
We propose a Monte Carlo method, which is a hybrid method of the quantum
Monte Carlo method and variational Monte Carlo theory, to study the Hubbard
model. The theory is based on the off-diagonal and the Gutzwiller type
correlation factors which are taken into account by a Monte Carlo algorithm. In
the 4x4 system our method is able to reproduce the exact results obtained by
the diagonalization. An application is given to investigate the half-filled
band case of two-dimensional square lattice. The energy is favorably compared
with quantum Monte Carlo data.Comment: 9 pages, 11 figure
Ground state of the three-band Hubbard model
The ground state of the two-dimensional three-band Hubbard model in oxide
superconductors is investigated by using the variational Monte Carlo method.
The Gutzwiller-projected BCS and spin- density wave (SDW) functions are
employed in the search for a possible ground state with respect to dependences
on electron density. Antiferromagnetic correlations are considerably enhanced
near half-filling. It is shown that the d-wave state may exist away from
half-filling for both the hole and electron doping cases. The overall structure
of the phase diagram obtained by the calculations qualitatively agrees with
experimental indications. The superconducting condensation energy is in
reasonable agreement with the experimental value obtained from specific heat
and critical magnetic field measurements for optimally doped samples. The
inhomogeneous SDW state is also examined near 1/8-hole doping.Comment: 10 pages, 17 figure
Clone flow analysis for a theory inspired Neutrino Experiment planning
The presence of several clone solutions in the simultaneous measurement of
() has been widely discussed in literature. In this letter
we write the analytical formulae of the clones location in the
() plane as a function of the physical input pair
(). We show how the clones move with changing
. The "clone flow" can be significantly different if computed
(naively) from the oscillation probabilities or (exactly) from the
probabilities integrated over the neutrino flux and cross-section.
Using our complete computation we compare the clone flow of a set of possible
future neutrino experiments: the CERN SuperBeam, BetaBeam and Neutrino Factory
proposals. We show that the combination of these specific BetaBeam and
SuperBeam does not help in solving the degeneracies. On the contrary, the
combination of one of them with the Neutrino Factory Golden and Silver channel
can be used, from a theoretical point of view, to solve completely the
eightfold degeneracy.Comment: 23 pages, using epsfi
- …
