314 research outputs found

    Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment

    Get PDF
    Context Although the pupil light reflex has been widely used as a clinical diagnostic tool for autonomic nervous system dysfunction, there is no systematic review available to summarize the evidence that the pupil light reflex is a sensitive method to detect parasympathetic dysfunction. Meanwhile, the relationship between parasympathetic functioning and hearing impairment is relatively unknown. Objectives To 1) review the evidence for the pupil light reflex being a sensitive method to evaluate parasympathetic dysfunction, 2) review the evidence relating hearing impairment and parasympathetic activity and 3) seek evidence of possible connections between hearing impairment and the pupil light reflex. Methods Literature searches were performed in five electronic databases. All selected articles were categorized into three sections: pupil light reflex and parasympathetic dysfunction, hearing impairment and parasympathetic activity, pupil light reflex and hearing impairment. Results Thirty-eight articles were included in this review. Among them, 36 articles addressed the pupil light reflex and parasympathetic dysfunction. We summarized the information in these data according to different types of parasympathetic-related diseases. Most of the studies showed a difference on at least one pupil light reflex parameter between patients and healthy controls. Two articles discussed the relationship between hearing impairment and parasympathetic activity. Both studies reported a reduced parasympathetic activity in the hearing impaired groups. The searches identified no results for pupil light reflex and hearing impairment. Discussion and Conclusions As the first systematic review of the evidence, our findings suggest that the pupil light reflex is a sensitive tool to assess the presence of parasympathetic dysfunction. Maximum constriction velocity and relative constriction amplitude appear to be the most sensitive parameters. There are only two studies investigating the relationship between parasympathetic activity and hearing impairment, hence further research is needed. The pupil light reflex could be a candidate measurement tool to achieve this goal

    Altered processing of sensory stimuli in patients with migraine

    Get PDF
    Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes

    Stimulation of the Sphenopalatine Ganglion Induces Reperfusion and Blood-Brain Barrier Protection in the Photothrombotic Stroke Model

    Get PDF
    The treatment of stroke remains a challenge. Animal studies showing that electrical stimulation of the sphenopalatine ganglion (SPG) exerts beneficial effects in the treatment of stroke have led to the initiation of clinical studies. However, the detailed effects of SPG stimulation on the injured brain are not known.The effect of acute SPG stimulation was studied by direct vascular imaging, fluorescent angiography and laser Doppler flowmetry in the sensory motor cortex of the anaesthetized rat. Focal cerebral ischemia was induced by the rose bengal (RB) photothrombosis method. In chronic experiments, SPG stimulation, starting 15 min or 24 h after photothrombosis, was given for 3 h per day on four consecutive days. Structural damage was assessed using histological and immunohistochemical methods. Cortical functions were assessed by quantitative analysis of epidural electro-corticographic (ECoG) activity continuously recorded in behaving animals.Stimulation induced intensity- and duration-dependent vasodilation and increased cerebral blood flow in both healthy and photothrombotic brains. In SPG-stimulated rats both blood brain-barrier (BBB) opening, pathological brain activity and lesion volume were attenuated compared to untreated stroke animals, with no apparent difference in the glial response surrounding the necrotic lesion.SPG-stimulation in rats induces vasodilation of cortical arterioles, partial reperfusion of the ischemic lesion, and normalization of brain functions with reduced BBB dysfunction and stroke volume. These findings support the potential therapeutic effect of SPG stimulation in focal cerebral ischemia even when applied 24 h after stroke onset and thus may extend the therapeutic window of currently administered stroke medications

    Conditioned Pain Modulation Is Associated with Common Polymorphisms in the Serotonin Transporter Gene

    Get PDF
    BACKGROUND: Variation in the serotonin transporter (5-HTT) gene (SLC6A4) has been shown to influence a wide range of affective processes. Low 5-HTT gene-expression has also been suggested to increase the risk of chronic pain. Conditioned pain modulation (CPM)--i.e. 'pain inhibits pain'--is impaired in chronic pain states and, reciprocally, aberrations of CPM may predict the development of chronic pain. Therefore we hypothesized that a common variation in the SLC6A4 is associated with inter-individual variation in CPM. Forty-five healthy subjects recruited on the basis of tri-allelic 5-HTTLPR genotype, with inferred high or low 5-HTT-expression, were included in a double-blind study. A submaximal-effort tourniquet test was used to provide a standardized degree of conditioning ischemic pain. Individualized noxious heat and pressure pain thresholds (PPTs) were used as subjective test-modalities and the nociceptive flexion reflex (NFR) was used to provide an objective neurophysiological window into spinal processing. RESULTS: The low, as compared to the high, 5-HTT-expressing group exhibited significantly reduced CPM-mediated pain inhibition for PPTs (p = 0.02) and heat-pain (p = 0.02). The CPM-mediated inhibition of the NFR, gauged by increases in NFR-threshold, did not differ significantly between groups (p = 0.75). Inhibition of PPTs and heat-pain were correlated (Spearman's rho = 0.35, p = 0.02), whereas the NFR-threshold increase was not significantly correlated with degree of inhibition of these subjectively reported modalities. CONCLUSIONS: Our results demonstrate the involvement of the tri-allelic 5-HTTLPR genotype in explaining clinically relevant inter-individual differences in pain perception and regulation. Our results also illustrate that shifts in NFR-thresholds do not necessarily correlate to the modulation of experienced pain. We discuss various possible mechanisms underlying these findings and suggest a role of regulation of 5-HT receptors along the neuraxis as a function of differential 5-HTT-expression

    Diabetic Neuropathy and Axon Reflex-Mediated Neurogenic Vasodilatation in Type 1 Diabetes

    Get PDF
    Objective: Axon reflex-mediated neurogenic vasodilatation in response to cutaneous heating may reflect early, pre-clinical small fibre dysfunction. We aimed to evaluate the distribution of the vascular flare area measured by laser doppler imaging (‘‘LDI FLARE area’’) in type 1 diabetes and in healthy volunteers. Research and Methods: Concurrent with clinical and electrophysiological examination to classify diabetic sensorimotor polyneuropathy (DSP), LDIFLARE area (cm 2) was determined in 89 type 1 diabetes subjects matched to 64 healthy volunteers. We examined the association and diagnostic performance of LDI with clinical and subclinical measures of DSP and its severity. Results: Compared to the 64 healthy volunteers, the 56 diabetes controls without DSP had significantly lower LDIFLARE area (p = 0.006). The 33 diabetes cases with DSP had substantially lower LDIFLARE area as compared to controls without DSP (p = 0.002). There was considerable overlap in LDIFLARE area between all groups such that the ROC curve had an AUC of 0.72 and optimal sensitivity of 70 % for the detection of clinical DSP. Use of a subclinical definition for DSP, according to subclinical sural nerve impairment, was associated with improved AUC of 0.75 and sensitivity of 79%. In multivariate analysis higher HbA1c and body mass index had independent associations with smaller LDIFLARE area. Conclusions: Axon reflex-mediated neurogenic vasodilatation in response to cutaneous heating is a biomarker of earl
    corecore