1,332 research outputs found
Fermionic Molecular Dynamics for nuclear dynamics and thermodynamics
A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional
is proposed in this paper. After introducing the basic formalism, some first
applications to nuclear structure and nuclear thermodynamics are presentedComment: 5 pages, Proceedings of the French-Japanese Symposium, September
2008. To be published in Int. J. of Mod. Phys.
Dynamic PRA: an Overview of New Algorithms to Generate, Analyze and Visualize Data
State of the art PRA methods, i.e. Dynamic PRA
(DPRA) methodologies, largely employ system
simulator codes to accurately model system dynamics.
Typically, these system simulator codes (e.g., RELAP5 )
are coupled with other codes (e.g., ADAPT,
RAVEN that monitor and control the simulation. The
latter codes, in particular, introduce both deterministic
(e.g., system control logic, operating procedures) and
stochastic (e.g., component failures, variable uncertainties)
elements into the simulation. A typical DPRA analysis is
performed by:
1. Sampling values of a set of parameters from the
uncertainty space of interest
2. Simulating the system behavior for that specific set of
parameter values
3. Analyzing the set of simulation runs
4. Visualizing the correlations between parameter values
and simulation outcome
Step 1 is typically performed by randomly sampling
from a given distribution (i.e., Monte-Carlo) or selecting
such parameter values as inputs from the user (i.e.,
Dynamic Event Tre
The long journey from the giant-monopole resonance to the nuclear-matter incompressibility
Differences in the density dependence of the symmetry energy predicted by
nonrelativistic and relativistic models are suggested, at least in part, as the
culprit for the discrepancy in the values of the compression modulus of
symmetric nuclear matter extracted from the energy of the giant monopole
resonance in 208Pb. ``Best-fit'' relativistic models, with stiffer symmetry
energies than Skyrme interactions, consistently predict higher compression
moduli than nonrelativistic approaches. Relativistic models with compression
moduli in the physically acceptable range of K=200-300 MeV are used to compute
the distribution of isoscalar monopole strength in 208Pb. When the symmetry
energy is artificially softened in one of these models, in an attempt to
simulate the symmetry energy of Skyrme interactions, a lower value for the
compression modulus is indeed obtained. It is concluded that the proposed
measurement of the neutron skin in 208Pb, aimed at constraining the density
dependence of the symmetry energy and recently correlated to the structure of
neutron stars, will also become instrumental in the determination of the
compression modulus of nuclear matter.Comment: 9 pages with 2 (eps) figure
On Properties of the Isoscalar Giant Dipole Resonance
Main properties (strength function, energy-dependent transition density,
branching ratios for direct nucleon decay) of the isoscalar giant dipole
resonance in several medium-heavy mass spherical nuclei are described within a
continuum-RPA approach, taking into account the smearing effect. All model
parameters used in the calculations are taken from independent data.
Calculation results are compared with available experimental data.Comment: 12 pages, 2 figure
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
Asymptotic Normalization Coefficients for 13C+p->14N
The proton exchange reaction has been measured
at an incident energy of 162 MeV. Angular distributions were obtained for
proton transfer to the ground and low lying excited states in . Elastic
scattering of on also was measured out to the rainbow angle
region in order to find reliable optical model potentials. Asymptotic
normalization coefficients for the system have been
found for the ground state and the excited states at 2.313, 3.948, 5.106 and
5.834 MeV in . These asymptotic normalization coefficients will be used
in a determination of the S-factor for at solar
energies from a measurement of the proton transfer reaction
.Comment: 5 pages, 6 figure
Self-consistent description of nuclear compressional modes
Isoscalar monopole and dipole compressional modes are computed for a variety
of closed-shell nuclei in a relativistic random-phase approximation to three
different parametrizations of the Walecka model with scalar self-interactions.
Particular emphasis is placed on the role of self-consistency which by itself,
and with little else, guarantees the decoupling of the spurious
isoscalar-dipole strength from the physical response and the conservation of
the vector current. A powerful new relation is introduced to quantify the
violation of the vector current in terms of various ground-state form-factors.
For the isoscalar-dipole mode two distinct regions are clearly identified: (i)
a high-energy component that is sensitive to the size of the nucleus and scales
with the compressibility of the model and (ii) a low-energy component that is
insensitivity to the nuclear compressibility. A fairly good description of both
compressional modes is obtained by using a ``soft'' parametrization having a
compression modulus of K=224 MeV.Comment: 28 pages and 10 figures; submitted to PR
Application of Risk within Net Present Value Calculations for Government Projects
In January 2004, President Bush announced a new vision for space exploration. This included retirement of the current Space Shuttle fleet by 2010 and the development of new set of launch vehicles. The President's vision did not include significant increases in the NASA budget, so these development programs need to be cost conscious. Current trade study procedures address factors such as performance, reliability, safety, manufacturing, maintainability, operations, and costs. It would be desirable, however, to have increased insight into the cost factors behind each of the proposed system architectures. This paper reports on a set of component trade studies completed on the upper stage engine for the new launch vehicles. Increased insight into architecture costs was developed by including a Net Present Value (NPV) method and applying a set of associated risks to the base parametric cost data. The use of the NPV method along with the risks was found to add fidelity to the trade study and provide additional information to support the selection of a more robust design architecture
Generator Coordinate Method Calculations for Ground and First Excited Collective States in He, O and Ca Nuclei
The main characteristics of the ground and, in particular, the first excited
monopole state in the He, O and Ca nuclei are studied
within the generator coordinate method using Skyrme-type effective forces and
three construction potentials, namely the harmonic-oscillator, the square-well
and Woods-Saxon potentials. Calculations of density distributions, radii,
nucleon momentum distributions, natural orbitals, occupation numbers and
depletions of the Fermi sea, as well as of pair density and momentum
distributions are carried out. A comparison of these quantities for both ground
and first excited monopole states with the available empirical data and with
the results of other theoretical methods are given and discussed in detail.Comment: 15 pages, LaTeX, 6 Postscript figures, submitted to EPJ
Conductance anomalies in quantum wires
We study the conductance threshold of clean nearly straight quantum wires in
the magnetic field. As a quantitative example we solve exactly the scattering
problem for two-electrons in a wire with planar geometry and a weak bulge. From
the scattering matrix we determine conductance via the Landauer-Buettiker
formalism. The conductance anomalies found near 0.25(2e^2/h) and 0.75(2e^2/h)
are related to a singlet resonance and a triplet resonance, respectively, and
survive to temperatures of a few degrees. With increasing in-plane magnetic
field the conductance exhibits a plateau at e^2/h, consistent with recent
experiments.Comment: Quantum wire with planar geometry; in-plane magnetic fiel
- …
