594 research outputs found
On the analysis of sedimentation velocity in the study of protein complexes
Sedimentation velocity analytical ultracentrifugation has experienced a significant transformation, precipitated by the possibility of efficiently fitting Lamm equation solutions to the experimental data. The precision of this approach depends on the ability to account for the imperfections of the experiment, both regarding the sample and the instrument. In the present work, we explore in more detail the relationship between the sedimentation process, its detection, and the model used in the mathematical data analysis. We focus on configurations that produce steep and fast-moving sedimentation boundaries, such as frequently encountered when studying large multi-protein complexes. First, as a computational tool facilitating the analysis of heterogeneous samples, we introduce the strategy of partial boundary modeling. It can simplify the modeling by restricting the direct boundary analysis to species with sedimentation coefficients in a predefined range. Next, we examine factors related to the experimental detection, including the magnitude of optical aberrations generated by out-of-focus solution columns at high protein concentrations, the relationship between the experimentally recorded signature of the meniscus and the meniscus parameter in the data analysis, and the consequences of the limited radial and temporal resolution of the absorbance optical scanning system. Surprisingly, we find that large errors can be caused by the finite scanning speed of the commercial absorbance optics, exceeding the statistical errors in the measured sedimentation coefficients by more than an order of magnitude. We describe how these effects can be computationally accounted for in SEDFIT and SEDPHAT
THE EFFECTS OF PRESSURE IN HIGH-SPEED ULTRACENTRIFUGATION OF CHEMICALLY REACTING SYSTEMS
Effect of Some Proteins on the Yeast Cell Membrane
Yeast cells,
Candida utilis
, in water suspension and in the absence of electrolytes were found to be very sensitive to several proteins of moderate size, including ribonuclease, protamine, lysozyme, bovine serum albumin, cytochrome
c
, and myoglobin. Viability ceases rapidly, and ultraviolet-absorbing compounds (260 mμ) and the amino acid pool are released into the medium. The ultraviolet-absorbing material appears to be the nucleotide and coenzyme fraction usually extracted by 0.2
n
perchloric acid at low temperature. The ribonucleic acid fraction remains in the cell ghosts and can be released by ribonuclease. The enzymatic properties of some of these proteins have no relation to their damaging effect on the cell membrane. Poly-
l
-lysine shows the same activity.
</jats:p
QUASI-ELASTIC LIGHT SCATTERING STUDIES OF THE KINETICS OF LYSOZYME DIMERIZATION
On a utilisé la technique de la diffusion de la lumière laser pour étudier les vitesses
et le mécanisme de dimérisation du lysozyme en l'absence de substrat. Ces expériences ont été
réalisées sur du lysozyme dans du KCl 0,15 molaire, a 20 °C , dans un domaine de pH de 3,0 à 7,0.
Les concentrations en protéine ont varié entre 3,6 x 10-4 et 14,6 x 10-4 molaire. L'échantillon
de pH = 3,0 (7,3 x 10-4 M) a présenté un Dw20 = (1,04 ± 0,02) x 10-6 cm2/s, correspondant
bien à la valeur acceptée pour le coefficient de diffusion translationnel de la forme monomère du
lysozyme. Les données de la diffusion ont indiqué que pour un pH 5,0-7,0, le lysozyme subit une
transformation de configuration avant de prendre la forme dimère stable. Cela est mis en évidence
par un minimum dans la valeur du coefficient de diffusion apparent au-dessous de ce qu'on attend
pour le dimère. Une analyse détaillée des spectres observés indique qu'on peut discerner deux
étapes dans la réaction. La plus lente de ces étapes correspond à la valeur de saut-T de Owen,
Eyring et Cole (1969), qui pour un pH de 7,0 est de (2,0 ± 0,5) x 10-3 s. Les données présentes
pour la réaction la plus lente montrent une absence semblable de dépendance avec la température
pour pH = 7,0 comme l'ont trouvé Owen et Coll. Cependant, pour des pH de 5,0 et 6,0, il y a
une augmentation du temps de relaxation avec une diminution de la concentration (au-dessous de
7 x 10-4 M de concentration de protéine) pour cette étape. D'après les données de la diffusion,
il apparaît aussi une composante spectrale correspondant à une étape de réaction avec un temps
de relaxation de (3,5 ± 1,0) x 10-5 s. La vitesse de ce processus plus rapide ne varie pas avec le pH
ou la concentration en protéine dans les limites des incertitudes expérimentales. On a postulé un
modèle pour le mécanisme de dimérisation en deux étapes faisant intervenir un changement de
configuration et un processus bimoléculaire. Ce modèle est capable de donner un accord qualitatif
avec les données observées bien qu'une nouvelle étude de l'auto-dissociation du lysozyme par
ultracentrifugation suggère que pour le pH de 7,0, l'association soit plus élevée que dimère.The laser light scattering technique has been used to probe the rates and mechanism
of the dimerization of lysozyme in the absence of substrates. These experiments were performed
on lysozyme in 0.15 M KCl and 20 °C over a range of pH from 3.0 to 7.0. Protein concentration
varied from 3.6 x 10-4 M to 14.6 x 10-4 M. The pH = 3.0 sample (7.3 x 10-4 M) showed that
Dw20 = (1.04 ± .02) x 10-6 cm2/s, corresponding well to the accepted value of the translational
diffusion coefficient for the monomeric form of lysozyme. The scattering data indicated that at
pH 5.0-7.0, lysozyme undergoes a conformation change before assuming the stable dimer form.
This is evidenced by a minimum in the value of the apparent diffusion coefficient below that expected
for the dimer. Detailed analysis of the observed spectra indicates that two rate steps can be discerned.
The slower of the two rates corresponds to the T-jump value of Owen, Eyring, and Cole,
(1969), which at pH = 7.0 is (2.0 ± .5) x 10-3 s. The present data for the slower reaction show a
similar lack of concentration dependence at pH = 7.0 as was found by Owen, et al. However, at
pH = 5.0 and 6.0, there is an increase of the relaxation time with decreasing concentration (below
7 x 10-4 M protein concentration) for this step. Also evident from the scattering data is a spectral
component corresponding to a rate process with a relaxation time of (3.5 ± 1.0) x 10-5 s. The
rate of this faster process does not Vary with pH or protein concentration within the bounds of
experimental uncertainty. A model for a two-step dimerization mechanism involving a conformation
change and a bimolecular process has been postulated. This model is able to give qualitative agreement
with the observed data although a reinvestigation of the lysozyme self-dissociation by equilibrium
ultracentrifugation suggest that at pH = 7.0, the association may be higher than dimer
DETERMINATION OF THE MOLECULAR WEIGHT DISTRIBUTION OF POLYMERS FROM SEDIMENTATION-DIFFUSION EQUILIBRIA
- …
