35,714 research outputs found
Path integral Monte Carlo study of the interacting quantum double-well model: Quantum phase transition and phase diagram
The discrete time path integral Monte Carlo (PIMC) with a one-particle
density matrix approximation is applied to study the quantum phase transition
in the coupled double-well chain. To improve the convergence properties, the
exact action for a single particle in a double well potential is used to
construct the many-particle action. The algorithm is applied to the interacting
quantum double-well chain for which the zero-temperature phase diagram is
determined. The quantum phase transition is studied via finite-size scaling and
the critical exponents are shown to be compatible with the classical
two-dimensional (2D) Ising universality class -- not only in the order-disorder
limit (deep potential wells) but also in the displacive regime (shallow
potential wells).Comment: 17 pages, 7 figures; Accepted for publication in Phys. Rev.
Fouling mechanisms in constant flux crossflow ultrafiltration
Four fouling models due to Hermia (complete pore blocking, intermediate pore blocking, cake filtration and standard pore blocking), have long been used to describe membrane filtration and fouling in constant transmembrane pressure (ΔP) operation of membranes. A few studies apply these models to constant flux dead-end filtration systems. However, these models have not been reported for constant flux crossflow filtration, despite the frequent use of this mode of membrane operation in practical applications. We report derivation of these models for constant flux crossflow filtration. Of the four models, complete pore blocking and standard pore blocking were deemed inapplicable due to contradicting assumptions and relevance, respectively. Constant flux crossflow fouling experiments of dilute latex bead suspensions and soybean oil emulsions were conducted on commercial poly (ether sulfone) flat sheet ultrafiltration membranes to explore the models’ abilities to describe such data. A model combining intermediate pore blocking and cake filtration appeared to give the best agreement with the experimental data. Below the threshold flux, both the intermediate pore blocking model and the combined model fit the data well. As permeate flux approached and passed the threshold flux, the combined model was required for accurate fits. Based on this observation, a physical interpretation of the threshold flux is proposed: the threshold flux is the flux below which cake buildup is negligible and above which cake filtration becomes the dominant fouling mechanism
Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks
Predicting the future health information of patients from the historical
Electronic Health Records (EHR) is a core research task in the development of
personalized healthcare. Patient EHR data consist of sequences of visits over
time, where each visit contains multiple medical codes, including diagnosis,
medication, and procedure codes. The most important challenges for this task
are to model the temporality and high dimensionality of sequential EHR data and
to interpret the prediction results. Existing work solves this problem by
employing recurrent neural networks (RNNs) to model EHR data and utilizing
simple attention mechanism to interpret the results. However, RNN-based
approaches suffer from the problem that the performance of RNNs drops when the
length of sequences is large, and the relationships between subsequent visits
are ignored by current RNN-based approaches. To address these issues, we
propose {\sf Dipole}, an end-to-end, simple and robust model for predicting
patients' future health information. Dipole employs bidirectional recurrent
neural networks to remember all the information of both the past visits and the
future visits, and it introduces three attention mechanisms to measure the
relationships of different visits for the prediction. With the attention
mechanisms, Dipole can interpret the prediction results effectively. Dipole
also allows us to interpret the learned medical code representations which are
confirmed positively by medical experts. Experimental results on two real world
EHR datasets show that the proposed Dipole can significantly improve the
prediction accuracy compared with the state-of-the-art diagnosis prediction
approaches and provide clinically meaningful interpretation
Worldline Casting of the Stochastic Vacuum Model and Non-Perturbative Properties of QCD: General Formalism and Applications
The Stochastic Vacuum Model for QCD, proposed by Dosch and Simonov, is fused
with a Worldline casting of the underlying theory, i.e. QCD. Important,
non-perturbative features of the model are studied. In particular,
contributions associated with the spin-field interaction are calculated and
both the validity of the loop equations and of the Bianchi identity are
explicitly demonstrated. As an application, a simulated meson-meson scattering
problem is studied in the Regge kinematical regime. The process is modeled in
terms of the "helicoidal" Wilson contour along the lines introduced by Janik
and Peschanski in a related study based on a AdS/CFT-type approach. Working
strictly in the framework of the Stochastic Vacuum Model and in a semiclassical
approximation scheme the Regge behavior for the Scattering amplitude is
demonstrated. Going beyond this approximation, the contribution resulting from
boundary fluctuation of the Wilson loop contour is also estimated.Comment: 37 pages, 1 figure. Final version to appear in Phys.Rev.
Monte Carlo modeling of spin injection through a Schottky barrier and spin transport in a semiconductor quantum well
We develop a Monte Carlo model to study injection of spin-polarized electrons
through a Schottky barrier from a ferromagnetic metal contact into a
non-magnetic low-dimensional semiconductor structure. Both mechanisms of
thermionic emission and tunneling injection are included in the model. Due to
the barrier shape, the injected electrons are non-thermalized. Spin dynamics in
the semiconductor heterostructure is controlled by the Rashba and Dresselhaus
spin-orbit interactions and described by a single electron spin density matrix
formalism. In addition to the linear term, the third order term in momentum for
the Dresselhaus interaction is included. Effect of the Schottky potential on
the spin dynamics in a 2 dimensional semiconductor device channel is studied.
It is found that the injected current can maintain substantial spin
polarization to a length scale in the order of 1 micrometer at room temperature
without external magnetic fields.Comment: 18 pages, 4 figures, J. Appl. Phys., accepted for publicatio
Regarding the axial-vector mesons
The implications of the mixing for the
mixing angle is investigated. Based on the
mixing angle suggested from the analysis
for a substantial body of data concerning the and , the
masses of the and are determined to be MeV and MeV, respectively, which therefore
suggests that the mixing angle is about . Also, it is found that the mass of the
(mostly of ) state is about MeV. Comparison of the
predicted results and the available experimental information of the
shows that without further confirmation on the , the assignment of
the as the member of the meson nonet may be
premature.Comment: 11 pages, some typos corrected, accepted for publication in Eur.
Phys. J.
Kondo resonances and anomalous gate dependence of electronic conduction in single-molecule transistors
We report Kondo resonances in the conduction of single-molecule transistors
based on transition metal coordination complexes. We find Kondo temperatures in
excess of 50 K, comparable to those in purely metallic systems. The observed
gate dependence of the Kondo temperature is inconsistent with observations in
semiconductor quantum dots and a simple single-dot-level model. We discuss
possible explanations of this effect, in light of electronic structure
calculations.Comment: 5 pages, four figures. Supplementary material at
http://www.ruf.rice.edu/~natelson/publications.htm
- …
