117 research outputs found
Formation of Two Component Bose Condensate During the Chemical Potential Curve Crossing
In this article we study the formation of the two modes Bose-Einstein
condensate and the correlation between them. We show that beyond the mean field
approximation the dissociation of a molecular condensate due to the chemical
potential curve crossing leads to the formation of two modes condensate. We
also show that these two modes are correlated in a two mode squeezed state.Comment: 10 page
Curve crossing in linear potential grids: the quasidegeneracy approximation
The quasidegeneracy approximation [V. A. Yurovsky, A. Ben-Reuven, P. S.
Julienne, and Y. B. Band, J. Phys. B {\bf 32}, 1845 (1999)] is used here to
evaluate transition amplitudes for the problem of curve crossing in linear
potential grids involving two sets of parallel potentials. The approximation
describes phenomena, such as counterintuitive transitions and saturation
(incomplete population transfer), not predictable by the assumption of
independent crossings. Also, a new kind of oscillations due to quantum
interference (different from the well-known St\"uckelberg oscillations) is
disclosed, and its nature discussed. The approximation can find applications in
many fields of physics, where multistate curve crossing problems occur.Comment: LaTeX, 8 pages, 8 PostScript figures, uses REVTeX and psfig,
submitted to Physical Review
Counterintuitive transitions in multistate curve crossing involving linear potentials
Two problems incorporating a set of horizontal linear potentials crossed by a
sloped linear potential are analytically solved and compared with numerical
results: (a) the case where boundary conditions are specified at the ends of a
finite interval, and (b) the case where the sloped linear potential is replaced
by a piecewise-linear sloped potential and the boundary conditions are
specified at infinity. In the approximation of small gaps between the
horizontal potentials, an approach similar to the one used for the degenerate
problem (Yurovsky V A and Ben-Reuven A 1998 J. Phys. B 31,1) is applicable for
both problems. The resulting scattering matrix has a form different from the
semiclassical result obtained by taking the product of Landau-Zener amplitudes.
Counterintuitive transitions involving a pair of successive crossings, in which
the second crossing precedes the first one along the direction of motion, are
allowed in both models considered here.Comment: LaTeX 2.09 using ioplppt.sty and psfig.sty, 16 pages with 5 figures.
Submitted to J. Phys.
Information extraction and transmission techniques for spaceborne synthetic aperture radar images
Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively
Modeling of gyrosynchrotron radio emission pulsations produced by MHD loop oscillations in solar flares
A quantitative study of the observable radio signatures of the sausage, kink,
and torsional MHD oscillation modes in flaring coronal loops is performed.
Considering first non-zero order effect of these various MHD oscillation modes
on the radio source parameters such as magnetic field, line of sight, plasma
density and temperature, electron distribution function, and the source
dimensions, we compute time dependent radio emission (spectra and light
curves). The radio light curves (of both flux density and degree of
polarization) at all considered radio frequencies are than quantified in both
time domain (via computation of the full modulation amplitude as a function of
frequency) and in Fourier domain (oscillation spectra, phases, and partial
modulation amplitude) to form the signatures specific to a particular
oscillation mode and/or source parameter regime. We found that the parameter
regime and the involved MHD mode can indeed be distinguished using the
quantitative measures derived in the modeling. We apply the developed approach
to analyze radio burst recorded by Owens Valley Solar Array and report possible
detection of the sausage mode oscillation in one (partly occulted) flare and
kink or torsional oscillations in another flare.Comment: ApJ, accepte
Feshbach-Stimulated Photoproduction of a Stable Molecular Condensate
Photoassociation and the Feshbach resonance are, in principle, feasible means
for creating a molecular Bose-Einstein condensate from an
already-quantum-degenerate gas of atoms; however, mean-field shifts and
irreversible decay place practical constraints on the efficient delivery of
stable molecules using either mechanism alone. We therefore propose
Feshbach-stimulated Raman photoproduction, i.e., a combination of magnetic and
optical methods, as a viable means to collectively convert degenerate atoms
into a stable molecular condensate with near-unit efficiency.Comment: 5 pages, 3 figures, 1 table; v3 includes few-level diagram of scheme,
and added discussion; transferred to PR
Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates
By colliding two Bose-Einstein condensates we have observed strong bosonic
stimulation of the elastic scattering process. When a weak input beam was
applied as a seed, it was amplified by a factor of 20. This large gain atomic
four-wave mixing resulted in the generation of two macroscopically occupied
pair-correlated atomic beams.Comment: Please take eps files for best details in figure
Stationary solutions of the one-dimensional nonlinear Schroedinger equation: II. Case of attractive nonlinearity
All stationary solutions to the one-dimensional nonlinear Schroedinger
equation under box or periodic boundary conditions are presented in analytic
form for the case of attractive nonlinearity. A companion paper has treated the
repulsive case. Our solutions take the form of bounded, quantized, stationary
trains of bright solitons. Among them are two uniquely nonlinear classes of
nodeless solutions, whose properties and physical meaning are discussed in
detail. The full set of symmetry-breaking stationary states are described by
the character tables from the theory of point groups. We make
experimental predictions for the Bose-Einstein condensate and show that, though
these are the analog of some of the simplest problems in linear quantum
mechanics, nonlinearity introduces new and surprising phenomena.Comment: 11 pages, 9 figures -- revised versio
BEC Collapse and Dynamical Squeezing of Vacuum Fluctuations
We analyze the phenomena of Bose Novae, as described by Donley et al [Nature
412, 295 (2001)], by focusing on the behavior of excitations or fluctuations
above the condensate, as driven by the dynamics of the condensate (rather than
the dynamics of the condensate alone or the kinetics of the atoms). The
dynamics of the condensate squeezes and amplifies the quantum excitations,
mixing the positive and negative frequency components of their wave functions
thereby creating particles which appear as bursts and jets. By analyzing the
changing amplitude and particle content of these excitations, our simple
physical picture (based on a test field approximation) explains well the
overall features of the Bose Novae phenomena and provide excellent quantitative
fits with experimental data on several aspects, such as the scaling behavior of
the collapse time and the amount of particles in the jet. The predictions of
the bursts at this level of approximation is less than satisfactory but may be
improved on by including the backreaction of the excitations on the condensate.
The mechanism behind the dominant effect -- parametric amplification of vacuum
fluctuations and freezing of modes outside of horizon -- is similar to that of
cosmological particle creation and structure formation in a rapid quench (which
is fundamentally different from Hawking radiation in black holes). This shows
that BEC dynamics is a promising venue for doing `laboratory cosmology'.Comment: Latex 36 pages, 6 figure
Counterintuitive transitions in the multistate Landau-Zener problem with linear level crossings
We generalize the Brundobler-Elser hypothesis in the multistate Landau-Zener
problem to the case when instead of a state with the highest slope of the
diabatic energy level there is a band of states with an arbitrary number of
parallel levels having the same slope. We argue that the probabilities of
counterintuitive transitions among such states are exactly zero.Comment: 9 pages, 5 figure
- …
