37 research outputs found

    Degree of Quantumness in Quantum Synchronization

    Get PDF
    We introduce the concept of degree of quantumness in quantum synchronization, a measure of the quantum nature of synchronization in quantum systems. Following techniques from quantum information, we propose the number of non-commuting observables that synchronize as a measure of quantumness. This figure of merit is compatible with already existing synchronization measurements, and it captures different physical properties. We illustrate it in a quantum system consisting of two weakly interacting cavity-qubit systems, which are coupled via the exchange of bosonic excitations between the cavities. Moreover, we study the synchronization of the expectation values of the Pauli operators and we propose a feasible superconducting circuit setup. Finally, we discuss the degree of quantumness in the synchronization between two quantum van der Pol oscillators

    Purity as a witness for initial system-environment correlations in open-system dynamics

    Full text link
    We study the dynamics of a two-level atom interacting with a Lorentzian structured reservoir considering initial system-environment correlations. It is shown that under strong system-reservoir coupling the dynamics of purity can determine whether there are initial correlations between system and environment. Moreover, we investigate the interaction of two two-level atoms with the same reservoir. In this case, we show that besides determining if there are initial system-environment correlations, the dynamics of the purity of the atomic system allows the identification of the distinct correlated initial states. In addition, the dynamics of quantum and classical correlations is analyzed.Comment: 6 pages, 3 figure

    Quantum coherence and speed limit in the mean-field Dicke model of superradiance

    Full text link
    Dicke superrandiance is a cooperative phenomenon which arises from the collective coupling of an ensemble of atoms to the electromagnetic radiation. Here we discuss the quantifying of quantum coherence for the Dicke model of superradiance in the mean-field approximation. We found the single-atom l1l_1-norm of coherence is given by the square root of the normalized average intensity of radiation emitted by the superradiant system. This validates quantum coherence as a useful figure of merit towards the understanding of superradiance phenomenon in the mean-field approach. In particular, this result suggests probing the single-atom coherence through the radiation intensity in superradiant systems, which might be useful in experimental realizations where is unfeasible to address atoms individually. Furthermore, given the nonlinear unitary dynamics of the time-dependent single-atom state that effectively describes the system of NN atoms, we analyze the quantum speed limit time and its interplay with the l1l_1-norm of coherence. We verify the quantum coherence speeds up the evolution of the superradiant system, i.e., the more coherence stored on the single-atom state, the faster the evolution. These findings unveil the role played by quantum coherence in superradiant systems, which in turn could be of interest for communities of both condensed matter physics and quantum optics.Comment: 9 pages, 1 figure. Close to published versio
    corecore