534 research outputs found

    Period functions for Maass wave forms. I

    Full text link
    Recall that a Maass wave form on the full modular group Gamma=PSL(2,Z) is a smooth gamma-invariant function u from the upper half-plane H = {x+iy | y>0} to C which is small as y \to \infty and satisfies Delta u = lambda u for some lambda \in C, where Delta = y^2(d^2/dx^2 + d^2/dy^2) is the hyperbolic Laplacian. These functions give a basis for L_2 on the modular surface Gamma\H, with the usual trigonometric waveforms on the torus R^2/Z^2, which are also (for this surface) both the Fourier building blocks for L_2 and eigenfunctions of the Laplacian. Although therefore very basic objects, Maass forms nevertheless still remain mysteriously elusive fifty years after their discovery; in particular, no explicit construction exists for any of these functions for the full modular group. The basic information about them (e.g. their existence and the density of the eigenvalues) comes mostly from the Selberg trace formula: the rest is conjectural with support from extensive numerical computations.Comment: 68 pages, published versio

    Quasimodularity and large genus limits of Siegel-Veech constants

    No full text
    Quasimodular forms were first studied in the context of counting torus coverings. Here we show that a weighted version of these coverings with Siegel-Veech weights also provides quasimodular forms. We apply this to prove conjectures of Eskin and Zorich on the large genus limits of Masur-Veech volumes and of Siegel-Veech constants. In Part I we connect the geometric definition of Siegel-Veech constants both with a combinatorial counting problem and with intersection numbers on Hurwitz spaces. We introduce modified Siegel-Veech weights whose generating functions will later be shown to be quasimodular. Parts II and III are devoted to the study of the quasimodularity of the generating functions arising from weighted counting of torus coverings. The starting point is the theorem of Bloch and Okounkov saying that q-brackets of shifted symmetric functions are quasimodular forms. In Part II we give an expression for their growth polynomials in terms of Gaussian integrals and use this to obtain a closed formula for the generating series of cumulants that is the basis for studying large genus asymptotics. In Part III we show that the even hook-length moments of partitions are shifted symmetric polynomials and prove a formula for the q-bracket of the product of such a hook-length moment with an arbitrary shifted symmetric polynomial. This formula proves quasimodularity also for the (-2)-nd hook-length moments by extrapolation, and implies the quasimodularity of the Siegel-Veech weighted counting functions. Finally, in Part IV these results are used to give explicit generating functions for the volumes and Siegel-Veech constants in the case of the principal stratum of abelian differentials. To apply these exact formulas to the Eskin-Zorich conjectures we provide a general framework for computing the asymptotics of rapidly divergent power series.Comment: 107 pages, final version, to appear in J. of the AM

    The energy operator for infinite statistics

    Full text link
    We construct the energy operator for particles obeying infinite statistics defined by a q-deformation of the Heisenberg algebra. (This paper appeared published in CMP in 1992, but was not archived at the time.)Comment: 6 page

    Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus

    No full text

    Periods of modular forms on Γ0(N)\Gamma_0(N) and products of Jacobi theta functions

    No full text
    Generalizing a result of [15] for modular forms of level one, we give a closed formula for the sum of all Hecke eigenforms on Γ0(N)\Gamma_0(N), multiplied by their odd period polynomials in two variables, as a single product of Jacobi theta series for any squarefree level NN. We also show that for N=2N=2,3 and 5 this formula completely determines the Fourier expansions of all Hecke eigenforms of all weights on Γ0(N)\Gamma_0(N)

    The Lagrange and Markov spectra from the dynamical point of view

    Full text link
    This text grew out of my lecture notes for a 4-hours minicourse delivered on October 17 \& 19, 2016 during the research school "Applications of Ergodic Theory in Number Theory" -- an activity related to the Jean-Molet Chair project of Mariusz Lema\'nczyk and S\'ebastien Ferenczi -- realized at CIRM, Marseille, France. The subject of this text is the same of my minicourse, namely, the structure of the so-called Lagrange and Markov spectra (with an special emphasis on a recent theorem of C. G. Moreira).Comment: 27 pages, 6 figures. Survey articl

    An elementary approach to toy models for D. H. Lehmer's conjecture

    Full text link
    In 1947, Lehmer conjectured that the Ramanujan's tau function τ(m)\tau (m) never vanishes for all positive integers mm, where τ(m)\tau (m) is the mm-th Fourier coefficient of the cusp form Δ24\Delta_{24} of weight 12. The theory of spherical tt-design is closely related to Lehmer's conjecture because it is shown, by Venkov, de la Harpe, and Pache, that τ(m)=0\tau (m)=0 is equivalent to the fact that the shell of norm 2m2m of the E8E_{8}-lattice is a spherical 8-design. So, Lehmer's conjecture is reformulated in terms of spherical tt-design. Lehmer's conjecture is difficult to prove, and still remains open. However, Bannai-Miezaki showed that none of the nonempty shells of the integer lattice \ZZ^2 in \RR^2 is a spherical 4-design, and that none of the nonempty shells of the hexagonal lattice A2A_2 is a spherical 6-design. Moreover, none of the nonempty shells of the integer lattices associated to the algebraic integers of imaginary quadratic fields whose class number is either 1 or 2, except for \QQ(\sqrt{-1}) and \QQ(\sqrt{-3}) is a spherical 2-design. In the proof, the theory of modular forms played an important role. Recently, Yudin found an elementary proof for the case of \ZZ^{2}-lattice which does not use the theory of modular forms but uses the recent results of Calcut. In this paper, we give the elementary (i.e., modular form free) proof and discuss the relation between Calcut's results and the theory of imaginary quadratic fields.Comment: 18 page
    corecore