1,468 research outputs found

    Magnetoplasmon excitations in an array of periodically modulated quantum wires

    Full text link
    Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the system are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.Comment: 9 pages, 8 figure

    A nonlocal kinetic energy functional for an inhomogeneous two-dimensional Fermi gas

    Full text link
    The average-density approximation is used to construct a nonlocal kinetic energy functional for an inhomogeneous two-dimensional Fermi gas. This functional is then used to formulate a Thomas-Fermi von Weizs\"acker-like theory for the description of the ground state properties of the system. The quality of the kinetic energy functional is tested by performing a fully self-consistent calculation for an ideal, harmonically confined, two-dimensional system. Good agreement with exact results are found, with the number and kinetic energy densities exhibiting oscillatory structure associated with the nonlocality of the energy functional. Most importantly, this functional shows a marked improvement over the two-dimensional Thomas-Fermi von Weizs\"acker theory, particularly in the vicinity of the classically forbidden region.Comment: 7 figure

    Multi-site mean-field theory for cold bosonic atoms in optical lattices

    Full text link
    We present a detailed derivation of a multi-site mean-field theory (MSMFT) used to describe the Mott-insulator to superfluid transition of bosonic atoms in optical lattices. The approach is based on partitioning the lattice into small clusters which are decoupled by means of a mean field approximation. This approximation invokes local superfluid order parameters defined for each of the boundary sites of the cluster. The resulting MSMFT grand potential has a non-trivial topology as a function of the various order parameters. An understanding of this topology provides two different criteria for the determination of the Mott insulator superfluid phase boundaries. We apply this formalism to dd-dimensional hypercubic lattices in one, two and three dimensions, and demonstrate the improvement in the estimation of the phase boundaries when MSMFT is utilized for increasingly larger clusters, with the best quantitative agreement found for d=3d=3. The MSMFT is then used to examine a linear dimer chain in which the on-site energies within the dimer have an energy separation of Δ\Delta. This system has a complicated phase diagram within the parameter space of the model, with many distinct Mott phases separated by superfluid regions.Comment: 30 pages, 23 figures, accepted for publication in Phys. Rev.

    Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions

    Full text link
    We present a study of the effects of temperature upon the excitation frequencies of a Bose-Einstein condensate formed within a dilute gas with a weak attractive effective interaction between the atoms. We use the self-consistent Hartree-Fock Bogoliubov treatment within the Popov approximation and compare our results to previous zero temperature and Hartree-Fock calculations The metastability of the condensate is monitored by means of the l=0l=0 excitation frequency. As the number of atoms in the condensate is increased, with TT held constant, this frequency goes to zero, signalling a phase transition to a dense collapsed state. The critical number for collapse is found to decrease as a function of temperature, the rate of decrease being greater than that obtained in previous Hartree-Fock calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.

    Beam splitting and Hong-Ou-Mandel interference for stored light

    Full text link
    Storing and release of a quantum light pulse in a medium of atoms in the tripod configuration are studied. Two complementary sets of control fields are defined, which lead to independent and complete photon release at two stages. The system constitutes a new kind of a flexible beam splitter in which the input and output ports concern photons of the same direction but well separated in time. A new version of Hong-Ou-Mandel interference is discussed.Comment: 8 pages, 3 figure

    Magnetoplasmon excitations in arrays of circular and noncircular quantum dots

    Full text link
    We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizs\"acker approximation. Deviations from the ideal collective excitations of isolated parabolically confined electrons arise from local perturbations of the confining potential as well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local symmetry from SO(2) to C4C_4 results in a resonant coupling of different modes and an observable anticrossing behaviour in the power absorption spectrum. Our results are in good agreement with recent far-infrared (FIR) transmission experiments.Comment: 25 pages, 6 figures, typeset in RevTe

    Electromagnetically-induced transparency and light storing of a pair of pulses

    Full text link
    Electromagnetically-induced transparency and light storing are studied in the case of a medium of atoms in a double Lambda configuration, both in terms of dark- and bright-state polatitons and atomic susceptibility. It is proven that the medium can be made transparent simultaneously for two pulses following their self-adjusting so that a condition for an adiabatic evolution has become fulfilled. Analytic formulas are given for the shapes and phases of the transmitted/stored pulses. The level of transparency can be regulated by adjusting the heights and phases of the control fields.Comment: text +6 figure

    Finite-temperature simulations of the scissors mode in Bose-Einstein condensed gases

    Full text link
    The dynamics of a trapped Bose-condensed gas at finite temperatures is described by a generalized Gross-Pitaevskii equation for the condensate order parameter and a semi-classical kinetic equation for the thermal cloud, solved using NN-body simulations. The two components are coupled by mean fields as well as collisional processes that transfer atoms between the two. We use this scheme to investigate scissors modes in anisotropic traps as a function of temperature. Frequency shifts and damping rates of the condensate mode are extracted, and are found to be in good agreement with recent experiments.Comment: 4 pages, 3 figure

    Landau damping in trapped Bose-condensed gases

    Full text link
    We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the Hartree-Fock approximation and obtain a novel expression for the Landau damping rate involving the time dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.Comment: 18 pages, 13 figures, submitted to the New Journal of Physics focus issue on Quantum Gase

    Precision Pointing Control System (PPCS) system design and analysis

    Get PDF
    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target
    corecore