1,468 research outputs found
Magnetoplasmon excitations in an array of periodically modulated quantum wires
Motivated by the recent experiment of Hochgraefe et al., we have investigated
the magnetoplasmon excitations in a periodic array of quantum wires with a
periodic modulation along the wire direction. The equilibrium and dynamic
properties of the system are treated self-consistently within the
Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the
dynamical response of the system to a far-infrared radiation field reveals a
resonant anticrossing between the Kohn mode and a finite-wavevector
longitudinal excitation which is induced by the density modulation along the
wires. Our theoretical calculations are found to be in excellent agreement with
experiment.Comment: 9 pages, 8 figure
A nonlocal kinetic energy functional for an inhomogeneous two-dimensional Fermi gas
The average-density approximation is used to construct a nonlocal kinetic
energy functional for an inhomogeneous two-dimensional Fermi gas. This
functional is then used to formulate a Thomas-Fermi von Weizs\"acker-like
theory for the description of the ground state properties of the system. The
quality of the kinetic energy functional is tested by performing a fully
self-consistent calculation for an ideal, harmonically confined,
two-dimensional system. Good agreement with exact results are found, with the
number and kinetic energy densities exhibiting oscillatory structure associated
with the nonlocality of the energy functional. Most importantly, this
functional shows a marked improvement over the two-dimensional Thomas-Fermi von
Weizs\"acker theory, particularly in the vicinity of the classically forbidden
region.Comment: 7 figure
Multi-site mean-field theory for cold bosonic atoms in optical lattices
We present a detailed derivation of a multi-site mean-field theory (MSMFT)
used to describe the Mott-insulator to superfluid transition of bosonic atoms
in optical lattices. The approach is based on partitioning the lattice into
small clusters which are decoupled by means of a mean field approximation. This
approximation invokes local superfluid order parameters defined for each of the
boundary sites of the cluster. The resulting MSMFT grand potential has a
non-trivial topology as a function of the various order parameters. An
understanding of this topology provides two different criteria for the
determination of the Mott insulator superfluid phase boundaries. We apply this
formalism to -dimensional hypercubic lattices in one, two and three
dimensions, and demonstrate the improvement in the estimation of the phase
boundaries when MSMFT is utilized for increasingly larger clusters, with the
best quantitative agreement found for . The MSMFT is then used to examine
a linear dimer chain in which the on-site energies within the dimer have an
energy separation of . This system has a complicated phase diagram
within the parameter space of the model, with many distinct Mott phases
separated by superfluid regions.Comment: 30 pages, 23 figures, accepted for publication in Phys. Rev.
Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions
We present a study of the effects of temperature upon the excitation
frequencies of a Bose-Einstein condensate formed within a dilute gas with a
weak attractive effective interaction between the atoms. We use the
self-consistent Hartree-Fock Bogoliubov treatment within the Popov
approximation and compare our results to previous zero temperature and
Hartree-Fock calculations The metastability of the condensate is monitored by
means of the excitation frequency. As the number of atoms in the
condensate is increased, with held constant, this frequency goes to zero,
signalling a phase transition to a dense collapsed state. The critical number
for collapse is found to decrease as a function of temperature, the rate of
decrease being greater than that obtained in previous Hartree-Fock
calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.
Beam splitting and Hong-Ou-Mandel interference for stored light
Storing and release of a quantum light pulse in a medium of atoms in the
tripod configuration are studied. Two complementary sets of control fields are
defined, which lead to independent and complete photon release at two stages.
The system constitutes a new kind of a flexible beam splitter in which the
input and output ports concern photons of the same direction but well separated
in time. A new version of Hong-Ou-Mandel interference is discussed.Comment: 8 pages, 3 figure
Magnetoplasmon excitations in arrays of circular and noncircular quantum dots
We have investigated the magnetoplasmon excitations in arrays of circular and
noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizs\"acker
approximation. Deviations from the ideal collective excitations of isolated
parabolically confined electrons arise from local perturbations of the
confining potential as well as interdot Coulomb interactions. The latter are
unimportant unless the interdot separations are of the order of the size of the
dots. Local perturbations such as radial anharmonicity and noncircular symmetry
lead to clear signatures of the violation of the generalized Kohn theorem. In
particular, the reduction of the local symmetry from SO(2) to results in
a resonant coupling of different modes and an observable anticrossing behaviour
in the power absorption spectrum. Our results are in good agreement with recent
far-infrared (FIR) transmission experiments.Comment: 25 pages, 6 figures, typeset in RevTe
Electromagnetically-induced transparency and light storing of a pair of pulses
Electromagnetically-induced transparency and light storing are studied in the
case of a medium of atoms in a double Lambda configuration, both in terms of
dark- and bright-state polatitons and atomic susceptibility. It is proven that
the medium can be made transparent simultaneously for two pulses following
their self-adjusting so that a condition for an adiabatic evolution has become
fulfilled. Analytic formulas are given for the shapes and phases of the
transmitted/stored pulses. The level of transparency can be regulated by
adjusting the heights and phases of the control fields.Comment: text +6 figure
Finite-temperature simulations of the scissors mode in Bose-Einstein condensed gases
The dynamics of a trapped Bose-condensed gas at finite temperatures is
described by a generalized Gross-Pitaevskii equation for the condensate order
parameter and a semi-classical kinetic equation for the thermal cloud, solved
using -body simulations. The two components are coupled by mean fields as
well as collisional processes that transfer atoms between the two. We use this
scheme to investigate scissors modes in anisotropic traps as a function of
temperature. Frequency shifts and damping rates of the condensate mode are
extracted, and are found to be in good agreement with recent experiments.Comment: 4 pages, 3 figure
Landau damping in trapped Bose-condensed gases
We study Landau damping in dilute Bose-Einstein condensed gases in both
spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov
equations for the mode spectrum in both of these cases, and calculate the
damping by summing over transitions between excited quasiparticle states. The
results for the spherical case are compared to those obtained in the
Hartree-Fock approximation, where the excitations take on a single-particle
character, and excellent agreement between the two approaches is found. We have
also taken the semiclassical limit of the Hartree-Fock approximation and obtain
a novel expression for the Landau damping rate involving the time dependent
self-diffusion function of the thermal cloud. As a final approach, we study the
decay of a condensate mode by making use of dynamical simulations in which both
the condensate and thermal cloud are evolved explicitly as a function of time.
A detailed comparison of all these methods over a wide range of sample sizes
and trap geometries is presented.Comment: 18 pages, 13 figures, submitted to the New Journal of Physics focus
issue on Quantum Gase
Precision Pointing Control System (PPCS) system design and analysis
The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target
- …
