859 research outputs found
Candidates for detecting exoplanetary radio emissions generated by magnetosphere-ionosphere coupling
In this paper we consider the magnetosphere-ionosphere (M-I) coupling at
Jupiter-like exoplanets with internal plasma sources such as volcanic moons,
and we have determined the best candidates for detection of these radio
emissions by estimating the maximum spectral flux density expected from planets
orbiting stars within 25 pc using data listed in the NASA/IPAC/NExScI Star and
Exoplanet Database (NStED). In total we identify 91 potential targets, of which
40 already host planets and 51 have stellar X-ray luminosity 100 times the
solar value. In general, we find that stronger planetary field strength,
combined with faster rotation rate, higher stellar XUV luminosity, and lower
stellar wind dynamic pressure results in higher radio power. The top two
targets for each category are Eri and HIP 85523, and CPD-28 332 and
FF And.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society Letter
Searching for Star-Planet interactions within the magnetosphere of HD 189733
HD 189733 is a K2 dwarf, orbited by a giant planet at 8.8 stellar radii. In
order to study magnetospheric interactions between the star and the planet, we
explore the large-scale magnetic field and activity of the host star.
We collected spectra using the ESPaDOnS and the NARVAL spectropolarimeters,
installed at the 3.6-m Canada-France-Hawaii telescope and the 2-m Telescope
Bernard Lyot at Pic du Midi, during two monitoring campaigns (June 2007 and
July 2008).
HD 189733 has a mainly toroidal surface magnetic field, having a strength
that reaches up to 40 G. The star is differentially rotating, with latitudinal
angular velocity shear of domega = 0.146 +- 0.049 rad/d, corresponding to
equatorial and polar periods of 11.94 +- 0.16 d and 16.53 +- 2.43 d
respectively. The study of the stellar activity shows that it is modulated
mainly by the stellar rotation (rather than by the orbital period or the beat
period between the stellar rotation and the orbital periods). We report no
clear evidence of magnetospheric interactions between the star and the planet.
We also extrapolated the field in the stellar corona and calculated the
planetary radio emission expected for HD 189733b given the reconstructed field
topology. The radio flux we predict in the framework of this model is time
variable and potentially detectable with LOFAR
Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions
In this paper we provide the first consideration of magnetosphere-ionosphere
coupling at Jupiter-like exoplanets with internal plasma sources such as
volcanic moons. We estimate the radio power emitted by such systems under the
condition of near-rigid corotation throughout the closed magnetosphere, in
order to examine the behaviour of the best candidates for detection with next
generation radio telescopes. We thus estimate for different stellar X-ray-UV
(XUV) luminosity cases the orbital distances within which the ionospheric
Pedersen conductance would be high enough to maintain near-rigid corotation,
and we then consider the magnitudes of the large-scale magnetosphere-ionosphere
currents flowing within the systems, and the resulting radio powers, at such
distances. We also examine the effects of two key system parameters, i.e. the
planetary angular velocity and the plasma mass outflow rate from sources
internal to the magnetosphere. In all XUV luminosity cases studied, a
significant number of parameter combinations within an order of magnitude of
the jovian values are capable of producing emissions observable beyond 1 pc, in
most cases requiring exoplanets orbiting at distances between ~1 and 50 AU, and
for the higher XUV luminosity cases these observable distances can reach beyond
~50 pc for massive, rapidly rotating planets. The implication of these results
is that the best candidates for detection of such internally-generated radio
emissions are rapidly rotating Jupiter-like exoplanets orbiting stars with high
XUV luminosity at orbital distances beyond ~1 AU, and searching for such
emissions may offer a new method of detection of more distant-orbiting
exoplanets.Comment: 15 pages, 9 figures. In press at Mon. Not. R. Astron. So
Numerical simulations of unbounded cyclotron-maser emissions
Numerical simulations have been conducted to study the spatial growth rate and emission topology of the cyclotron-maser instability responsible for stellar/planetary auroral magnetospheric radio emission and intense non-thermal radio emission in other astrophysical contexts. These simulations were carried out in an unconstrained geometry, so that the conditions existing within the source region of some natural electron cyclotron masers could be more closely modelled. The results have significant bearing on the radiation propagation and coupling characteristics within the source region of such non-thermal radio emissions
Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array
This paper presents a search for radio transients at a frequency of 73.8 MHz
(4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength
Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope,
located on the site of the Very Large Array in New Mexico. The field of view of
the individual dipoles was essentially the entire sky, and the number of
dipoles was sufficiently small that a simple software correlator could be used
to make all-sky images. From 2006 October to 2007 February, we conducted an
all-sky transient search program, acquiring a total of 106 hr of data; the time
sampling varied, being 5 minutes at the start of the program and improving to 2
minutes by the end of the program. We were able to detect solar flares, and in
a special-purpose mode, radio reflections from ionized meteor trails during the
2006 Leonid meteor shower. We detected no transients originating outside of the
solar system above a flux density limit of 500 Jy, equivalent to a limit of no
more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x
10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate
is comparable to that determined from previous all-sky transient searches, but
at a lower frequency than most previous all-sky searches. We believe that the
LWDA illustrates how an all-sky imaging mode could be a useful operational
model for low-frequency instruments such as the Low Frequency Array, the Long
Wavelength Array station, the low-frequency component of the Square Kilometre
Array, and potentially the Lunar Radio Array.Comment: 20 pages; accepted for publication in A
Orbital and superorbital variability of LS I +61 303 at low radio frequencies with GMRT and LOFAR
LS I +61 303 is a gamma-ray binary that exhibits an outburst at GHz
frequencies each orbital cycle of 26.5 d and a superorbital
modulation with a period of 4.6 yr. We have performed a detailed
study of the low-frequency radio emission of LS I +61 303 by analysing all the
archival GMRT data at 150, 235 and 610 MHz, and conducting regular LOFAR
observations within the Radio Sky Monitor (RSM) at 150 MHz. We have detected
the source for the first time at 150 MHz, which is also the first detection of
a gamma-ray binary at such a low frequency. We have obtained the light-curves
of the source at 150, 235 and 610 MHz, all of them showing orbital modulation.
The light-curves at 235 and 610 MHz also show the existence of superorbital
variability. A comparison with contemporaneous 15-GHz data shows remarkable
differences with these light-curves. At 15 GHz we see clear outbursts, whereas
at low frequencies we see variability with wide maxima. The light-curve at 235
MHz seems to be anticorrelated with the one at 610 MHz, implying a shift of
0.5 orbital phases in the maxima. We model the shifts between the maxima
at different frequencies as due to changes in the physical parameters of the
emitting region assuming either free-free absorption or synchrotron
self-absorption, obtaining expansion velocities for this region close to the
stellar wind velocity with both mechanisms.Comment: 12 pages, 10 figures, accepted for publication in MNRA
MOVES – I. The evolving magnetic field of the planet-hosting star HD189733
HD189733 is an active K dwarf that is, with its transiting hot Jupiter, among the most studied exoplanetary systems. In this first paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) programme, we present a 2-yr monitoring of the large-scale magnetic field of HD189733. The magnetic maps are reconstructed for five epochs of observations, namely 2013 June–July, 2013 August, 2013 September, 2014 September and 2015 July, using Zeeman–Doppler imaging. We show that the field evolves along the five epochs, with mean values of the total magnetic field of 36, 41, 42, 32 and 37 G, respectively. All epochs show a toroidally dominated field. Using previously published data of Moutou et al. and Fares et al., we are able to study the evolution of the magnetic field over 9 yr, one of the longest monitoring campaigns for a given star. While the field evolved during the observed epochs, no polarity switch of the poles was observed. We calculate the stellar magnetic field value at the position of the planet using the potential field source surface extrapolation technique. We show that the planetary magnetic environment is not homogeneous over the orbit, and that it varies between observing epochs, due to the evolution of the stellar magnetic field. This result underlines the importance of contemporaneous multiwavelength observations to characterize exoplanetary systems. Our reconstructed maps are a crucial input for the interpretation and modelling of our MOVES multiwavelength observations.Publisher PDFPeer reviewe
Dependence of CMI Growth Rates on Electron Velocity Distributions and Perturbation by Solitary Waves
We calculate growth rates and corresponding gains for RX and LO mode
radiation associated with the cyclotron maser instability for parameterized
horseshoe electron velocity distributions. The velocity distribution function
was modeled to closely fit the electron distribution functions observed in the
auroral cavity. We systematically varied the model parameters as well as the
propagation direction to study the dependence of growth rates on model
parameters. The growth rate depends strongly on loss cone opening angle, which
must be less than for significant CMI growth. The growth rate is
sharply peaked for perpendicular radiation (), with a
full-width at half-maximum , in good agreement with observed k-vector
orientations and numerical simulations. The fractional bandwidth varied between
10 and 10, depending most strongly on propagation direction. This
range encompasses nearly all observed fractional AKR burst bandwidths. We find
excellent agreement between the computed RX mode emergent intensities and
observed AKR intensities assuming convective growth length 20-40 km
and group speed 0.15. The only computed LO mode growth rates compatible
observed LO mode radiation levels occurred for number densities more than 100
times the average energetic electron densities measured in auroral cavities.
This implies that LO mode radiation is not produced directly by the CMI
mechanism but more likely results from mode conversion of RX mode radiation. We
find that perturbation of the model velocity distribution by large ion solitary
waves (ion holes) can enhance the growth rate by a factor of 2-4. This will
result in a gain enhancement more than 40 dB depending on the convective growth
length within the structure. Similar enhancements may be caused by EMIC waves.Comment: 21 pages, 11 figures. J. Geophys. Res. 2007 (accepted
Imaging Jupiter's radiation belts down to 127 MHz with LOFAR
Context. Observing Jupiter's synchrotron emission from the Earth remains
today the sole method to scrutinize the distribution and dynamical behavior of
the ultra energetic electrons magnetically trapped around the planet (because
in-situ particle data are limited in the inner magnetosphere). Aims. We perform
the first resolved and low-frequency imaging of the synchrotron emission with
LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV)
which map a broad region of Jupiter's inner magnetosphere. Methods (see article
for complete abstract) Results. The first resolved images of Jupiter's
radiation belts at 127-172 MHz are obtained along with total integrated flux
densities. They are compared with previous observations at higher frequencies
and show a larger extent of the synchrotron emission source (>=4 ). The
asymmetry and the dynamic of east-west emission peaks are measured and the
presence of a hot spot at lambda_III=230 {\deg} 25 {\deg}. Spectral flux
density measurements are on the low side of previous (unresolved) ones,
suggesting a low-frequency turnover and/or time variations of the emission
spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The
observations at 127 MHz depict an extended emission up to ~4-5 planetary radii.
The similarities with high frequency results reinforce the conclusion that: i)
the magnetic field morphology primarily shapes the brightness distribution of
the emission and ii) the radiating electrons are likely radially and
latitudinally distributed inside about 2 . Nonetheless, the larger extent
of the brightness combined with the overall lower flux density, yields new
information on Jupiter's electron distribution, that may shed light on the
origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) -
abstract edited because of limited character
- …
