830 research outputs found
Quantum Key Distribution over 67 km with a plug & play system
We present a fibre-optical quantum key distribution system. It works at
1550nm and is based on the plug & play setup. We tested the stability under
field conditions using aerial and terrestrial cables and performed a key
exchange over 67 km between Geneva and Lausanne.Comment: 8 pages, 3 figures, 2 tables. Submitted to the New Journal of Physic
Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses
The technological possibilities of a realistic eavesdropper are discussed.
Two eavesdropping strategies taking profit of multiphoton pulses in faint laser
QKD are presented. We conclude that, as long as storage of Qubits is
technically impossible, faint laser QKD is not limited by this security issue,
but mostly by the detector noise.Comment: 7 pages, 6 figure
Femtosecond Time-Bin Entangled Qubits for Quantum Communication
We create pairs of non-degenerate time-bin entangled photons at telecom
wavelengths with ultra-short pump pulses. Entanglement is shown by performing
Bell kind tests of the Franson type with visibilities of up to 91%. As
time-bin entanglement can easily be protected from decoherence as encountered
in optical fibers, this experiment opens the road for complex quantum
communication protocols over long distances. We also investigate the creation
of more than one photon pair in a laser pulse and present a simple tool to
quantify the probability of such events to happen.Comment: 6 pages, 7 figure
Long distance quantum teleportation in a quantum relay configuration
A long distance quantum teleportation experiment with a fiber-delayed Bell
State Measurement (BSM) is reported. The source creating the qubits to be
teleported and the source creating the necessary entangled state are connected
to the beam splitter realizing the BSM by two 2 km long optical fibers. In
addition, the teleported qubits are analyzed after 2,2 km of optical fiber, in
another lab separated by 55 m. Time bin qubits carried by photons at 1310 nm
are teleported onto photons at 1550 nm. The fidelity is of 77%, above the
maximal value obtainable without entanglement. This is the first realization of
an elementary quantum relay over significant distances, which will allow an
increase in the range of quantum communication and quantum key distribution.Comment: 4 pages, submitte
CONTROL OF END-TIDAL HALOTHANE CONCENTRATION: Part B: Verification in Dogs
Conventional anaesthetic techniques do not allow for the automatic control of end-tidal halothane concentration and, therefore, brain concentration cannot be predicted. In this study, eight dogs were ventilated with halothane in oxygen using a new closed-loop anaesthetic breathing system which provided a constant end-tidal concentration. During the first 60 min the end-tidal concentration was maintained at 0.87 vol% (1 MAC). Then followed 60 min of halothane wash-out and a further 120-min period of halothane at 1.74 vol% (2 MAC). Halothane concentrations were measured in the inspired and expired air, and in the arterial, cerebral venous and mixed venous blood. Haemodynamic and respiratory variables were measured. The system reached 95% of the target end-tidal concentration within 6 min without over-shooting. After 2 h of wash-in, significant gradients still persisted between end-tidal, arterial and cerebral venous blood concentrations. Measured uptake differed from theoretically calculated uptake by 18.3-57.6%, depending on the model used. Measured arterial and cerebral venous concentrations differed from theoretically calculated values by 7% and 17.5%, respectively. It was shown that the required end-tidal concentrations can be obtained rapidly and accurately, and that brain tissue concentrations can be predicted within certain limit
DETERMINATION OF THE PARTIAL PRESSURE OF HALOTHANE (OR ISOFLURANE) IN BLOOD
A gas chromatographic method is described for the direct quantitative determination of the partial pressure of halothane {or isoflurane) in blood as well as the blood-gas partition coefficient. A head space technique and a flame ionization detector were used. Standard blood was obtained by equilibrating patients' blood with known gas concentrations in a tonometer. Using an infra-red analyser to measure the halothane gas concentration in the tonometer and within the anaesthetic system allowed for the direct comparison of the partial pressure in blood to the partial pressure in the inspired gas. Technical problems associated with this procedure, and with comparable methods, are discusse
Equivalent efficiency of a simulated photon-number detector
Homodyne detection is considered as a way to improve the efficiency of
communication near the single-photon level. The current lack of commercially
available {\it infrared} photon-number detectors significantly reduces the
mutual information accessible in such a communication channel. We consider
simulating direct detection via homodyne detection. We find that our particular
simulated direct detection strategy could provide limited improvement in the
classical information transfer. However, we argue that homodyne detectors (and
a polynomial number of linear optical elements) cannot simulate photocounters
arbitrarily well, since otherwise the exponential gap between quantum and
classical computers would vanish.Comment: 4 pages, 4 figure
- …
