186 research outputs found

    Proof of a determinant evaluation conjectured by Bombieri, Hunt and van der Poorten

    Full text link
    A determinant evaluation is proven, a special case of which establishes a conjecture of Bombieri, Hunt, and van der Poorten (Experimental Math\. {\bf 4} (1995), 87--96) that arose in the study of Thue's method of approximating algebraic numbers.Comment: AMSTe

    Directed-loop Monte Carlo simulations of vertex models

    Full text link
    We show how the directed-loop Monte Carlo algorithm can be applied to study vertex models. The algorithm is employed to calculate the arrow polarization in the six-vertex model with the domain wall boundary conditions (DWBC). The model exhibits spatially separated ordered and ``disordered'' regions. We show how the boundary between these regions depends on parameters of the model. We give some predictions on the behavior of the polarization in the thermodynamic limit and discuss the relation to the Arctic Circle theorem.Comment: Extended version with autocorrelations and more figures. Added 2 reference

    Spanning forest polynomials and the transcendental weight of Feynman graphs

    Full text link
    We give combinatorial criteria for predicting the transcendental weight of Feynman integrals of certain graphs in ϕ4\phi^4 theory. By studying spanning forest polynomials, we obtain operations on graphs which are weight-preserving, and a list of subgraphs which induce a drop in the transcendental weight.Comment: 30 page

    Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwell's Equations

    Full text link
    We consider the numerical discretization of the time-domain Maxwell's equations with an energy-conserving discontinuous Galerkin finite element formulation. This particular formulation allows for higher order approximations of the electric and magnetic field. Special emphasis is placed on an efficient implementation which is achieved by taking advantage of recurrence properties and the tensor-product structure of the chosen shape functions. These recurrences have been derived symbolically with computer algebra methods reminiscent of the holonomic systems approach.Comment: 16 pages, 1 figure, 1 table; Springer Wien, ISBN 978-3-7091-0793-

    Enumeration of quarter-turn symmetric alternating-sign matrices of odd order

    Full text link
    It was shown by Kuperberg that the partition function of the square-ice model related to the quarter-turn symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijection with the quarter-turn symmetric alternating-sign matrices of odd order, and show that the partition function of this model can be also written in a similar way. This allows to prove, in particular, the conjectures by Robbins related to the enumeration of the quarter-turn symmetric alternating-sign matrices.Comment: 11 pages, 13 figures; minor correction

    On two-point boundary correlations in the six-vertex model with DWBC

    Full text link
    The six-vertex model with domain wall boundary conditions (DWBC) on an N x N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N x N and (N-1) x (N-1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.Comment: v2: a reference added, typos correcte

    Dynamical Belyi maps

    Full text link
    We study the dynamical properties of a large class of rational maps with exactly three ramification points. By constructing families of such maps, we obtain infinitely many conservative maps of degree dd; this answers a question of Silverman. Rather precise results on the reduction of these maps yield strong information on the rational dynamics.Comment: 21 page

    A double bounded key identity for Goellnitz's (big) partition theorem

    Full text link
    Given integers i,j,k,L,M, we establish a new double bounded q-series identity from which the three parameter (i,j,k) key identity of Alladi-Andrews-Gordon for Goellnitz's (big) theorem follows if L, M tend to infinity. When L = M, the identity yields a strong refinement of Goellnitz's theorem with a bound on the parts given by L. This is the first time a bounded version of Goellnitz's (big) theorem has been proved. This leads to new bounded versions of Jacobi's triple product identity for theta functions and other fundamental identities.Comment: 17 pages, to appear in Proceedings of Gainesville 1999 Conference on Symbolic Computation

    The role of orthogonal polynomials in the six-vertex model and its combinatorial applications

    Full text link
    The Hankel determinant representations for the partition function and boundary correlation functions of the six-vertex model with domain wall boundary conditions are investigated by the methods of orthogonal polynomial theory. For specific values of the parameters of the model, corresponding to 1-, 2- and 3-enumerations of Alternating Sign Matrices (ASMs), these polynomials specialize to classical ones (Continuous Hahn, Meixner-Pollaczek, and Continuous Dual Hahn, respectively). As a consequence, a unified and simplified treatment of ASMs enumerations turns out to be possible, leading also to some new results such as the refined 3-enumerations of ASMs. Furthermore, the use of orthogonal polynomials allows us to express, for generic values of the parameters of the model, the partition function of the (partially) inhomogeneous model in terms of the one-point boundary correlation functions of the homogeneous one.Comment: Talk presented by F.C. at the Short Program of the Centre de Recherches Mathematiques: Random Matrices, Random Processes and Integrable Systems, Montreal, June 20 - July 8, 200

    The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions

    Full text link
    We consider the application of the DRA method to the case of several master integrals in a given sector. We establish a connection between the homogeneous part of dimensional recurrence and maximal unitarity cuts of the corresponding integrals: a maximally cut master integral appears to be a solution of the homogeneous part of the dimensional recurrence relation. This observation allows us to make a necessary step of the DRA method, the construction of the general solution of the homogeneous equation, which, in this case, is a coupled system of difference equations.Comment: 17 pages, 2 figure
    corecore