151 research outputs found
Agonistic Interventions into Public Commemorative Art:An Innovative Form of Counter-memorial Practice?
In light of recent controversies around the removal or modification of public commemorative art, such as memorials and monuments, this paper interrogates the value of competing approaches to counter-memorial practice using the framework of agonistic memory. It argues that much counter-memorial practice today, as it relates to historical memory, is dominated by a “cosmopolitan” mode that fails to offer a convincing response to the rise of right-wing populism and its instrumentalization of conflicts over public commemorative art. The article investigates two case studies of counter-memorial interventions that focus on the memory of fascism in Europe today and seeks to identify and assess emergent agonistic practices
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report
The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.</jats:p
THERMEFLEX: THERMALLY MEDIATED FLEXOELECTRICITY
This thesis project was successful in thermally mediated the flexoelectric effect by using a bilayer material device made up of single crystalline Strontium titanate (STO) and titanium (Ti) 10x5x0.5mm substrates connected with conductive epoxy. Heating the device with a 100 second period sine wave between -20° and 100° Celsius generated outputs from 20pA up to 100pA. Polishing allowed for device thickness variations from 1000 microns down to 400 microns. Finite Element Analysis approximations of our device deflection corresponded to within an order of magnitude to deflection measurements; however, no trend was observed concerning device thickness variation and flexoelectric output, likely due to device fabrication complications. Two separate theoretical models were developed to predict the device deflection and thus output from first principles, however both of these models failed to predict results accurately. In summary, this thesis project successfully proves the existence of thermally mediated flexoelectricity, for which the calculated efficiency was 5.8e-15. Although not likely applicable for energy harvesting at larger length scales, such an effect could be used as thermal sensor
THE PRECIPITATION OF MAGNESIUM AMMONIUM PHOSPHATE CRYSTALS DURING THE GROWTH OF BACTERIA IN MEDIA CONTAINING NITROGENOUS SUBSTANCES
Paranasal sinus cysts in the horse: Complications related to their presence and surgical treatment in 37 cases
- …
