78 research outputs found
Deep Supported Excavation in Difficult Ground Conditions in the City of Patras, Greece — Measured vs. Predicted Behavior
The technical characteristics of a deep supported excavation project using anchored diaphragm walls and the measured (by inclinometers) behavior of the soil retaining system are presented. The measured behavior is then compared with the predicted behavior using a finite element model of the excavation. The comparison shows a good agreement in a location where the soil profile is well defined. However, differences in the magnitude of the displacements were observed when the information on the soil profile was incomplete due to the variability of the deposits on site
Earthquake science in resilient societies
Earthquake science is critical in reducing vulnerability to a broad range of seismic hazards. Evidenceâ based studies drawing from several branches of the Earth sciences and engineering can effectively mitigate losses experienced in earthquakes. Societies that invest in this research have lower fatality rates in earthquakes and can recover more rapidly. This commentary explores the scientific pathways through which earthquakeâ resilient societies are developed. We highlight recent case studies of evidenceâ based decision making and how modern research is improving the way societies respond to earthquakes.Key PointsThe level of seismic risk depends in part on societal investment in earthquake scienceMultidisciplinary investigations involving earthquake scientists and engineers greatly reduce casualties in earthquakesRecent examples highlight the utility of earthquake science in building resilient societies and the need for further research to reduce seismic riskPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137197/1/tect20552_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137197/2/tect20552.pd
New Orleans and Hurricane Katrina. III: The 17th Street Drainage Canal
The failure of the levee and floodwall section on the east bank of the 17th Street drainage canal was one of the most catastrophic breaches that occurred during Hurricane Katrina. It produced a breach that rapidly scoured a flow pathway below sea level, so that after the storm surge had largely subsided, floodwaters still continued to stream in through this breach for the next two and a half days. This particular failure contributed massively to the overall flooding of the Metropolitan Orleans East Bank protected basin. Slightly more than half of the loss of life, and a similar fraction of the overall damages, occurred in this heavily populated basin. There are a number of important geotechnical and geoforensic lessons associated with this failure. Accordingly, this paper is dedicated solely to investigating this single failure. Geological and geotechnical details, such as a thin layer of sensitive clay that was laid down by a previous hurricane, proper strength characterization of soils at and beyond the toe of the levee, and recognition of a water-filled gap on the inboard side of the sheet pile cutoff wall are judged to be among the most critical factors in understanding this failure. The lessons learned from this study are of importance for similar flood protection systems throughout other regions of the United States and the world
Realities of bridge resilience in Small Island Developing States
Small Island Developing States (SIDS) are acknowledged as particularly vulnerable to extreme climate events; however, the realities for transport infrastructure and bridges are still poorly studied. Assessing bridges in this context can be challenging due to data scarcity, a lack of local standards, and uncertainty due to climate change. While bridges are designed to connect transport networks, they also carry energy, water, and communication networks, making them critical cascading failure points worthy of special attention in terms of risk assessment and resilience measures. We explore what resilience actually means for the design and management of SIDS bridge infrastructure by applying a post disaster forensics and systems approach that is not reliant on complex methods or large amounts of data. To demonstrate the practicality of our approach, we apply it to the island of Dominica, which is regularly impacted by both tropical storms and hurricanes. Our results document the extreme conditions for infrastructure and nearby settlements and the complex interrelated physical processes that occur during these events. We reflect on the implications for design approaches for bridges under these conditions and detail specific recommendations on how the resilience of existing and new bridges can be enhanced through practical measures that are achievable, even within the constraints experienced by those managing bridge infrastructure in SIDS contexts. This work adds to the growing number of studies exploring forensic disaster investigation and systems thinking, but is the first to explore bridge resilience in SIDS
Coupled experimental assessment of physico-biochemical characteristics of municipal solid waste undergoing enhanced biodegradation
Seven municipal solid waste (MSW) specimens with variable initial waste compositions were biodegraded in large (d = 300 mm, h = 600 mm) laboratory landfill simulators under leachate-recirculation-enhanced anaerobic biodegradation conditions to investigate changes in the biochemical and physical characteristics of solid waste, leachate and biogas during biodegradation. The evolution with time of the monitored characteristics of the three phases was presented and the characteristics empirically correlated. The impact of the initial composition of waste on the biodegradation process was quantified. Although removal of soluble compounds in leachate, and methane (CH4) generation from waste was practically completed after around 300 days, changes in vertical strain, total unit weight and volumetric moisture content of waste continued in decreasing rates even after 1000 days. Methane generation potential (L0) of the waste was correlated to the percentage of biodegradable waste prior to degradation expressed by parameter B0. Maximum methane generation rate (rCH4,max) increased with increasing L0 and maximum soluble chemical oxygen demand in leachate. Final strain (or settlement) of waste due to anaerobic biodegradation (εB,f) increased with increasing B0 and L0. The compression ratio was found to vary during the process, although it is commonly assumed to be constant. The maximum long-term compression ratio increased with increasing εB,f and rCH4,max. The total unit weight at submerged and field capacity states and volumetric moisture content of waste were also dependent on the initial composition and compression (quantified by strain) of waste. The trends presented in this study contribute to the quantitative understanding of coupled processes during enhanced biodegradation of MSW of variable waste composition. </jats:p
Case Histories-Based Evaluation of the Deep Dynamic Compaction Technique on Municipal Solid Waste Sites
The Influence of Waste Composition on the Physico-Biochemical-Hydraulic Characteristics of the Degradation Process of Municipal Solid Waste
- …
